分析 (1)根据平行四边形的性质得到AD=CB,AD∥BC,∠ADB=∠CBD,由于G、H分别是对角线BD上的三等分点,于是得到BH=DG,结论即可得出;
(2)通过△DEH≌△BFG,即可得到EH=FG,∠DHE=∠BGF,EH∥FG,根据平行四边形的判定定理即可得到结论四边形GEHF是平行四边形.
解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD=CB,AD∥BC,
∴∠ADB=∠CBD,
∵G、H分别是对角线BD上的三等分点,
∴BH=DG,
在△ADG与△CBH中$\left\{\begin{array}{l}{AD=CB}\\{∠ADB=∠CBD}\\{DG=BH}\end{array}\right.$,
∴△ADG≌△CBH;
(2)∵四边形ABCD是平行四边形,
∴AD=CB,AD∥BC,
∴∠ADB=∠CBD,
∵点E、F分别是AD、BC的中点,
∴DE=BF,
∵G、H分别是对角线BD上的三等分点.
∴DH=BG,
在△DEH与△BFG中,$\left\{\begin{array}{l}{DE=BF}\\{∠EDH=∠GBF}\\{DH=BG}\end{array}\right.$,
∴△DEH≌△BFG,
∴EH=FG,∠DHE=∠BGF,
∴∠EHG=∠FGH,
∴EH∥FG,
∴四边形GEHF是平行四边形.
点评 本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟记这些定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com