【题目】(发现问题)如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.
(拓展探究)如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.
【答案】【发现问题】见解析;【拓展探究】a.
【解析】分析:【发现问题】根据等腰直角三角形的性质得到,DF=FA;,AG=GE,根据三角形的中位线的性质得到FM∥AC,MG∥AB,推出四边形AFMG是平行四边形,根据平行四边形的性质得到FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,即可得到结论;
【拓展探究】根据三角形的中位线的性质得到FM∥AC,MG∥AB,∠MGC=∠BAC=∠BFM,等量代换得到∠DFM=∠MGE,根据余角的性质得到∠1=∠3,根据三角函数的定义 推出 得到△DFM∽△MGE,根据相似三角形的性质即可得到结论.
详解:【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,
∴,DF=FA;
∵△ACE是等腰直角三角形,G为斜边AC的中点,
∴,AG=GE,
∵点F.M、G分别为AB、BC、AC边的中点,
∴FM∥AC,MG∥AB,
∴四边形AFMG是平行四边形,
∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,
∴DF=MG,∠DFM=∠MGE,FM=GE,
在△DFM与△MGE中,
∴△DFM≌△MGE.
【拓展探究】∵点F.M、G分别为AB、BC、AC边的中点,
∴FM∥AC,MG∥AB,
∠MGC=∠BAC=∠BFM,
∴∠DFM=∠MGE,
∵
∴∠1=∠3,
∴tan∠1=tan∠3,
即
∴
∵∠DFM=∠MGE,
∴△DFM∽△MGE,
∴
在Rt△ADF中,
∴
∵△DFM的面积为a,
∴
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )
A. 将抛物线c沿x轴向右平移个单位得到抛物线c′ B. 将抛物线c沿x轴向右平移4个单位得到抛物线c′
C. 将抛物线c沿x轴向右平移个单位得到抛物线c′ D. 将抛物线c沿x轴向右平移6个单位得到抛物线c′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB=15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.
(1)求点B的坐标;
(2)求EA的长度;
(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是线段AB上的一点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①②若点D是AB的中点,则AF=AB;③当B,C,F,D四点在同一个圆上时,DF=DB;④若,则,其中正确的结论序号是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017山东省菏泽市,第20题,7分)如图,一次函数y=kx+b与反比例函数的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com