精英家教网 > 初中数学 > 题目详情

【题目】如图,把矩形OABC放入平面直角坐标系xO中,使OAOC分别落在xy轴的正半轴上,其中AB15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.

1)求点B的坐标;

2)求EA的长度;

3)点Py轴上一动点,是否存在点P使得PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.

【答案】1B915);(25;(3)存在,P0

【解析】

1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;

2)在Rt△BCD中,BC9BDAB15CD12OD15123,设DEAEx,在Rt△DEO中,根据DE2OD2+OE2,构建方程即可解决问题;

3)如图作点E关于y轴的对称点E,连接BEy轴于P,此时BPE的周长最小.利用待定系数法求出直线BE的解析式即可解决问题;

解:(1AB15,四边形OABC是矩形,

OCAB15

C015),代入yy=﹣x+b得到b15

直线AC的解析式为y=﹣x+15

y0,得到x9

A90),B915).

2)在Rt△BCD中,BC9BDAB15

CD12

OD15123

DEAEx

Rt△DEO中,DE2OD2+OE2

x232+9x2

x5

AE5

3)如图作点E关于y轴的对称点E,连接BEy轴于P,此时BPE的周长最小.

E40),

E(﹣40),

设直线BE的解析式为ykx+b,则有

解得

直线BE的解析式为yx+

P0).

故答案为:(1B915);(25;(3)存在,P0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2-5x+c的图象如图所示.

(1)试求该二次函数的解析式和它的图象的顶点坐标;

(2)观察图象回答,x何值时y的值大于0?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元

(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;

(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)某商场用2500元购进了A、B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示:

(1)这两种台灯各购进多少盏?

(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,数轴上,点的初始位置表示的数为,现点做如下移动,1次点向左移动3个单位长度至点,第2次从点向右移动6个单位长度至点,第次从点向左移动个单位长度至点,…,按照这种移动方式进行下云,如果点与原点的距离不小于,那么的最小值是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求作图.

1)如图1,平行四边形ABCD,点EF分别在边ADBC上,且AECF,连接EF.请你只用无刻度直尺画出线段EF的中点O.(保留画图痕迹,不必说明理由).

2)如图2,平行四边形ABCD,点E在边AB上,请你只用无刻度直尺在边CD上找一点F,使得四边形AECF为平行四边形,并说明理由.(注意:无刻度直尺只能过点画线段或直线或射线).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD1,以AD为边作等边△ADE,过点EEFBC,交AC于点F,连接BF,则下列结论中ABD≌△BCF四边形BDEF是平行四边形;S四边形BDEFSAEF.其中正确的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点表示的数是在点的右侧,且到点的距离是18;点在点与点之间,且到点的距离是到点距离的2.

(1)点表示的数是____________;点表示的数是_________;

(2)若点P从点出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动。设运动时间为秒,在运动过程中,当为何值时,点P与点Q之间的距离为6?

(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为在运动过程中,是否存在某一时刻使得?若存在,请求出此时点表示的数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.

(1)求上述抛物线的表达式;

(2)联结BC、BD,且BDAC于点E,如果ABE的面积与ABC的面积之比为4:5,求∠DBA的余切值;

(3)过点DDFAC,垂足为点F,联结CD.若CFDAOC相似,求点D的坐标.

查看答案和解析>>

同步练习册答案