分析 (1)①根据题意画出图形即可;
②根据角平分线定义可得∠ABD=∠DBC,根据平行线的性质可得∠EDB=∠DBC,进而可得∠EBD=∠EDB,从而可得△EBD是等角三角形;
(2)根据平行线的性质可得∠1=∠B,∠2=∠C,再根据角平分线的性质可得∠1=∠2,进而可得结论;
(3)过点M作GH∥BC,交AB于点G,交AC于点H,利用平行线的性质和角平分线定义进行证明即可.
解答
解:(1)①如图1.
②△EBD是等角三角形.
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵DE∥BC,
∴∠EDB=∠DBC,
∴∠EBD=∠EDB,
∴△EBD是等角三角形;
(2)△ABC是等角三角形.
理由如下:如图2,∵AF∥BC,
∴∠1=∠B,
∠2=∠C,
∵AF是∠GAC的角平分线,
∴∠1=∠2,
∴∠B=∠C,
∴△ABC是等角三角形.
(3)过点M作GH∥BC,交AB于点G,交AC于点H.
出现两个等角三角形分别是:△GBM和△HMC.![]()
证明:如图3,∵GH∥BC,
∴∠1=∠3,
∵BM是∠ABC角平分线,
∴∠GBM=∠3,
∴∠1=∠GBM,
所以△GBM是等角三角形.
点评 此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角、同位角相等.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 50° | B. | 40° | C. | 30° | D. | 80° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①×4-②×2 | B. | ①×2-② | ||
| C. | 由①得y=$\frac{17x-8}{2}$,再代入② | D. | 由②得$\frac{13x+10}{4}$,再代入① |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 产品 | 每件产品的产值 |
| 甲 | 45万元 |
| 乙 | 75万元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com