精英家教网 > 初中数学 > 题目详情
18.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.

分析 根据“利润=(售价-成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.

解答 解:设定价为x元,每天的销售利润为y.
根据题意得:y=(x-15)[8+2(25-x)]
=-2x2+88x-870
∴y=-2x2+88x-870,
=-2(x-22)2+98
∵a=-2<0,
∴抛物线开口向下,
∴当x=22时,y最大值=98.
故答案为:22.

点评 此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人数.
(1)请你求出图中的x值;
(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点A,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB(结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.
(1)若点M(2,a)是反比例函数y=$\frac{k}{x}$(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是(  )
A.$\sqrt{2}$cm,3πcm2B.2$\sqrt{2}$cm,3πcm2C.2$\sqrt{2}$cm,6πcm2D.$\sqrt{10}$cm,6πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨1元,每星期要少卖8件;每降价1元,每星期可多卖12件.已知商品的进价为每件40元.
(1)设每件涨价x元,每星期售出商品的利润为y元,求出y关于x的函数关系式;
(2)设每件降价x元,每星期售出商品的利润为y元,求出y关于x的函数关系式;
(3)问如何定价才能使利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC和△DEF在直角坐标系中的位置如图所示.
(1)将△ABC绕点O点逆时针旋转90°后得到△A1B1C1
(2)将△DEF以点O为旋转中心作中心对称图形得到△D1E1F1,请画出△D1E1F1,并写出F1的坐标为(-4,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图是孔明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知 AB⊥BD,CD⊥BD,且测得AB=6米,BP=9米,PD=15米,那么该古城墙的高度是(  )
A.6米B.8米C.10米D.15米

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重叠,折痕为EF,若DF=3,∠FDC=30°,则△DEF的周长是9.

查看答案和解析>>

同步练习册答案