【题目】如图,在四边形ABCD中,AD∥BC,且AD<BC,△ABC平移到△DEF的位置.
(1)指出平移的方向和平移的距离;
(2)求证:AD+BC=BF.
【答案】
(1)解:平移的方向是点A到点D的方向,平移的距离是线段AD的长度.
(2)证明:∵△ABC平移到△DEF的位置,∴CF=AD.∵CF+BC=BF,∴AD+BC=BF.
【解析】(1)根据已知条件△ABC平移到△DEF的位置,可得出平移的方向和平移的距离。
(2)根据平移的性质可得出CF=AD,再根据CF+BC=BF,即可证得AD+BC=BF。
【考点精析】解答此题的关键在于理解图形的平移的相关知识,掌握对应线段,对应点所连线段平行(或在同一直线上)且相等;对应角相等;平移方向和距离是它的两要素,以及对平移的性质的理解,了解①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.
科目:初中数学 来源: 题型:
【题目】中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )
A.0.675×105
B.6.75×104
C.67.5×103
D.675×102
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,二次函数y=-2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值及点B的坐标;
(2)求△ABC的面积;
(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个单位位于一条封闭式街道的两旁,分别用点M,N表示,现准备修建一座过街天桥,桥建在何处时才能使点M到点N的路线最短?请说明理由.(注意:桥必须和街道垂直)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.
【探究证明】
⑴请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
⑵如图2,求证:∠OAB=∠OAE′.
图1(n=4) 图2(n=5) 图3(n=6) 图n
【归纳猜想】
⑶图1、图2中的“叠弦角”的度数分别为_____________,_________;
⑷图n中,“叠弦三角形”_____________等边三角形(填“是”或“不是”)
⑸图n中,“叠弦角”的度数为______________________(用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC 的方向平移 2 个单位后,得到△△A′B′C′,连接 A′C,则△A′B′C 的周长为__________ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com