精英家教网 > 初中数学 > 题目详情

【题目】如图,点O为平面直角坐标系的原点,在长方形OABC中,OC∥AB,OA∥BC,两边OC、OA分别在x轴和y轴上,且点B(a,b)满足:+(2b+6)2=0.

(1)求点B的坐标;

(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:3两部分,求点P的坐标;

(3)如图2,M为线段OC一点,且∠ABM=∠AMB,Nx轴负半轴上一动点,∠MAN的平分线ADBM的延长线于点D,在点N运动的过程中,试判断∠ANM∠D的数量关系,并说明理由.

【答案】(1)B(4,﹣3)(2)(2,0)或(0,﹣)(3)∠ANM=2∠D

【解析】

(1)利用非负数的性质即可解决问题;

(2)分两种情形分别讨论求解即可;

(3)结论:∠ANM=2D.作MEADABE.延长BAF.利用平行线的性质,角平分线的定义即可解决问题;

(1)由题意:4﹣a=0,2b+6=0,

∴a=4,b=﹣3,

∴B(4,﹣3).

(2)①当点P在OC上时,由题意:SBCP:S四边形OABC=1:4,

CP3=×3×4,

∴PC=2.

∴OP=4﹣2=2,

∴P(2,0).

当点P中OA上时,SABP=S四边形OABC

PA4=×3×4

∴PA=

∴OP=3﹣=

∴P(0,﹣),

综上所述,满足条件的点P坐标为(2,0)或(0,﹣).

(3)结论:∠ANM=2∠D.

理由:作MEAD交AB于E.延长BA到F.

∵ME∥AD,

∴∠1=∠D,∠2=∠3,

AD平分∠MAN,

∴∠MAN=2∠3,

∵OC∥AB,

∴∠ABM=∠CMB,

∵∠AMB=∠CMB,

∴∠AMC=2∠AMB,

∵OC∥AB,

∴∠FAM=∠AMC=2∠AMB,

∴∠ANM=2∠AMB﹣2∠3

=2∠AMB﹣2∠2

=2(∠AMB﹣∠2)

=2∠1

=2∠D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON的面积不变,(4)MN的长不变,

其中正确的为__________(请填写结论前面的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学课上,张老师出示了一个题目:如图,ABCD的对角线相交于点O,过点OEF垂直于BDAB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.其中四位同学写出的结论如下:

小青:OE=OF;小何:四边形DFBE是正方形;

小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=CAF.

这四位同学写出的结论中不正确的是(  )

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】证明命题对角线相等的平行四边形是矩形,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小张同学根据题意画出的图形,并写出了不完整的已知和求证.

已知:如图,ABCD是平行四边形,ACBD是对角线,且   

求证:   

请你补全已知和求证,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AC上取点B,在其同一侧作两个等边三角形ABD BCE ,连接AECDGF,下列结论正确的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上.

1)求轮船在B处时与灯塔M的距离;

2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求:此时轮船与灯塔M的距离是多少?灯塔M在轮船的什么方向上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;

(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象经过点(﹣,﹣ ),且图象与x轴的交点到原点的距离为1,则该一次函数的解析式为:_____

查看答案和解析>>

同步练习册答案