精英家教网 > 初中数学 > 题目详情

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON的面积不变,(4)MN的长不变,

其中正确的为__________(请填写结论前面的序号).

【答案】(1)(2)(3)

【解析】

如图作PE⊥OAE,PF⊥OBF.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.

如图作PE⊥OAE,PF⊥OBF.

∵∠PEO=∠PFO=90°,
∴∠EPF+∠AOB=180°,
∵∠MPN+∠AOB=180°,
∴∠EPF=∠MPN,
∴∠EPM=∠FPN,
∵OP平分∠AOB,PE⊥OAE,PF⊥OBF,
∴PE=PF,
在△POE和△POF中,

,

∴△POE≌△POF,
∴OE=OF,
在△PEM和△PFN中,

,

∴△PEM≌△PFN,
∴EM=NF,PM=PN,故(1)正确,
∴SPEM=SPNF
∴S四边形PMON=S四边形PEOF=定值,故(3)正确,
∵OM+ON=OE+ME+OF-NF=2OE=定值,故(2)正确,
MN的长度是变化的,故(4)错误,
故答案是: 1)(2)(3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图列表列举等方法给出分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OB平分CBA,CO平分ACB,且MNBC,设AB=12,BC=24,AC=18,则AMN的周长为( )

A.30 B.33 C.36 D.39

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD(四边相等、四内角相等)中,AD5,点EF是正方形ABCD内的两点,且AEFC4BEDF3,则EF的平方为(  )

A.2B.C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列结论中:①有三个角是的三角形是等边三角形;②有一个外角是的等腰三角形是等边三角形;③有一个角是,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB90°AB5cmBC4cm,若点P从点A出发,以每秒1cm的速度沿折线ABCA运动,设运动时间为tt0)秒.

1AC   cm

2)若点P恰好在∠ABC的角平分线上,求此时t的值;

3)在运动过程中,当t为何值时,△ACP为等腰三角形(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为平面直角坐标系的原点,在长方形OABC中,OC∥AB,OA∥BC,两边OC、OA分别在x轴和y轴上,且点B(a,b)满足:+(2b+6)2=0.

(1)求点B的坐标;

(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:3两部分,求点P的坐标;

(3)如图2,M为线段OC一点,且∠ABM=∠AMB,Nx轴负半轴上一动点,∠MAN的平分线ADBM的延长线于点D,在点N运动的过程中,试判断∠ANM∠D的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BDDECEDE,垂足分别是DEAB=AC,∠BAC=90°

1ABD≌△CAE

2)探索DEBDCE长度之间的关系并证明.

查看答案和解析>>

同步练习册答案