精英家教网 > 初中数学 > 题目详情
已知,如图,a,b,c分别是△ABC中∠A,∠B,∠C的对边,P为BC上一点,以AP为直径的圆O交AB于D,PE∥AB交AC于E,b,c是方程x2+kx+9=0的两根,且(b2+c2)(b2+c2-14)-72=0,锐角B的正弦值等于
2
3
2

(1)求k的值;
(2)设BD=x,求四边形ADPE的面积为S关于x的函数关系式;
(3)问圆O是否能与BC相切?若能请求出x的值;若不能,请说明理由.
分析:(1)求出b2+c2=18,根据根与系数的关系求出b+c=-k,bc=9,代入得出方程(-k)2-2×9=18,求出即可;
(2)求出方程的解,得出AB=AC=3,根据sinB=
PD
PB
=
2
2
3
,设PD=2
2
y,PD=3y,在Rt△BDP中,由勾股定理求出y=x,得出PD=2
2
x,PB=3x,求出BC,根据△CPE∽△CBA,得出比例式求出PE,代入S=
1
2
(PE+AD)×PD求出即可;
(3)根据圆的切线的性质,当∠APB=90°时,圆O能与BC相切,根据等腰三角形性质得出BD=DC=
1
2
,根据PB=3x=
1
2
求出即可.
解答:(1)解:∵(b2+c2)(b2+c2-14)-72=0,
∴(b2+c22-14(b2+c2)-72=0,
解得:b2+c2=18,b2+c2=-4(舍去),
∵b,c是方程x2+kx+9=0的两根,
∴b+c=-k,bc=9,
∴b2+c2=(b+c)2-2bc=18,
即(-k)2-2×9=18,
解得:k=6,k=-6,
∵b+c=-k,c、b是三角形的边长,
∴k=6舍去,
即k=-6;

(2)解:把k=-6代入方程得:x2-6x+9=0,
解得:x1=x2=3,
即b=c=3,
AB=AC=3,
∵AP是直径,
∴∠ADP=90°=∠BDP,
∵sinB=
2
3
2

PD
PB
=
2
2
3

设PD=2
2
y,BD=3y,在Rt△BDP中,由勾股定理得:PD2+BD2=PB2
(2
2
y)
2
+x2=(3y)2
解得:y=x,
PD=2
2
x,PB=3x,
过A作AN⊥BC于N,
∵AB=3,sinB=
AN
AB
=
2
3
2

∴AN=2
2

由勾股定理得:BN=1,
∵AB=AC,AN⊥BC,
∴CN=BN=1,
BC=2,
∵PE∥AB,
∴△CPE∽△CBA,
PE
BA
=
CP
BC

PE
3
=
2-3x
2

∴PE=-
9
2
x+3,
∴四边形ADPE的面积S=
1
2
(PE+AD)×PD=
1
2
×(
9
2
x+3+3-x)×2
2
x=
7
2
2
x2+3
2
x,
答:四边形ADPE的面积为S关于x的函数关系式是S=
7
2
2
x2+3
2
x.

(3)解:圆O能与BC相切,
理由是:根据圆的切线的性质,当∠APB=90°时,圆O能与BC相切,
∵AP是直径,
∴∠ADP=90°,
∵AC=AB=3,BC=2,
∴BD=DC=1,
由(2)知:PB=3x=1,
x=
1
3

答:圆O能与BC相切,x的值是
1
3
点评:本题考查了相似三角形的性质和判定,切线的性质,梯形的性质,等腰三角形的性质,能综合运用性质进行推理和计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M、N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60°方向上,从A向东走500m到达B处精英家教网,测得C在B的北偏西45°方向上.
(1)NM是否穿过文物保护区?为什么?(参考数据:
3
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工作需要多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为
π

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠1=∠2,
 
.求证:AB=AC.
(1)在横线上添加一个使命题的结论成立的条件;
(2)写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
的图象与x轴分别交于A,B两点,与y轴交精英家教网于C点,⊙M经过原点O及点A、C,点D是劣弧
OA
上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

查看答案和解析>>

同步练习册答案