精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为

【答案】
【解析】解:如图1所示;点E与点C′重合时.
在Rt△ABC中,BC= =4.
由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.
设DC=ED=x,则BD=4﹣x.
在Rt△DBE中,DE2+BE2=DB2 , 即x2+22=(4﹣x)2
解得:x=
∴DE=
如图2所示:∠EDB=90时.

由翻折的性质可知:AC=AC′,∠C=∠C′=90°.
∵∠C=∠C′=∠CDC′=90°,
∴四边形ACDC′为矩形.
又∵AC=AC′,
∴四边形ACDC′为正方形.
∴CD=AC=3.
∴DB=BC﹣DC=4﹣3=1.
∵DE∥AC,
∴△BDE∽△BCA.
,即
解得:DE=
点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.
故答案为:
点E与点C′重合时.在Rt△ABC中,由勾股定理可求得BC=4,由翻折的性质可知:AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,依据勾股定理列方程求解即可;当∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°,然后证明四边形ACDC′为正方形,从而求得DB=1,然后证明DE∥AC,△BDE∽△BCA,依据相似三角形的性质可求得DE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:把函数y=bx+a和函数y=ax+b(其中a,b是常数,且a≠0,b≠0)称为一对交换函数,其中一个函数是另一个函数的交换函数.比如,函数y=4x+1是函数y=x+4的交换函数,等等.

(1)直接写出函数y=2x+1的交换函数;_________________;并直接写出这对交换函数和x轴所围图形的面积为_____________________________

(2)若一次函数y=ax+2a和其交换函数与x轴所围图形的面积为3,求a的值.

(3)如图,在平面直角坐标xOy中,矩形OABC中,点C(0, ),M、N分别是线段OC、AB的中点,将△ABD沿着折痕AD翻折,使点B的落点E恰好落在线段MN的中点,点F是线段BC的中点,连接EF,若一次函数与线段EF始终都有交点,则m的取值范围为_____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列平面直角坐标系中画出函数y1=-x+3,y2=3x-4的图象.观察图象,回答下列问题:

(1)当x取何值时,y1=y2?

(2)当x取何值时,y1>y2?

(3)当x取何值时,y1<y2?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1点O为直线AB上一点过O点作射线OC使BOC=120°将一直角三角板的直角顶点放在点O处一边OM在射线OB上另一边ON在直线AB的下方

1如图2将图1中的三角板绕点O逆时针旋转使边OM在BOC的内部且OM恰好平分BOC此时AOM= 度;

2如图3继续将图2中的三角板绕点O按逆时针方向旋转使得ON在AOC的内部试探究AOM与NOC之间满足什么等量关系并说明理由;

3将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周在旋转的过程中若直线ON恰好平分AOC则此时三角板绕点O旋转的时间是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:(1)2x-5=3x+2;

(2)3(x+2)-2(2x-3)=12;

(3) =1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,

①BC与CF的位置关系是:
②BC、CD、CF之间的数量关系为:(将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:

平均货轮载重的吨数(万吨)

10

5

7.5

平均每吨货物可获例如(百元)

5

3.6

4


(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?
(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,AB的垂直平分线交AC于点N,交BC的延长线于点M,A=40°.

(1)求∠NMB的大小.

(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.

(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)

(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?

查看答案和解析>>

同步练习册答案