精英家教网 > 初中数学 > 题目详情
18.王大意在计算某多边形的内角和时,得到的答案是2070°,老师发现他把其中一个外角也加了进去,你知道王大意计算的是几边形的内角和吗?那个加进去的外角是多少度?

分析 根据多边形的内角和公式,可得答案.

解答 解:由题意,得
2070÷180=11…90,
王大意计算的是十一边形的内角和,
多加的外角是90°.

点评 本题考查了多边的内角与外角,利用内角和是180的倍数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在图中,E位于线段AC上,D位于线段BE上.
(1)说明为什么AB+AE>DB+DE;
(2)说明为什么AB+AC>DB+DC;
(3)AB+BC+CA与2(DA+DB+DC),哪一个更大?证明你的答案;
(4)AB+BC+CA与DA+DB+DC,哪一个更大?证明你的答案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,在△ABC中,∠ABC=90°,AB=8,BC=6,若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,求线段DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知四边形ACBD的四个顶点都在同一条抛物线上,B(3,0),D(2,1),D点是抛物线的顶点,A点和C点是抛物线与坐标轴的交点.
(1)求抛物线的解析式及顶A、C点的坐标;
(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的垂线,交直线BC于点E.试用含x的代数式表示PE的长度,并求PE的最大值;
(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC以每秒1个单位的速度沿直线CB方向运动,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,是否存在t使S有最大值,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.2017年某市中考体育考试包括必考和选考两项.必考项目:男生1000米跑;女生800米跑;选考项目(五项中任选两项):A.掷实心球、B.篮球运球、C.足球运球、D.立定跳远、E.一分钟跳绳.那么小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{1}{10}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某青少年科技创新小组设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两遥控车同时分别从A,B两处出发,沿轨道到达C处,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图所示,试根据图象解决下列问题:
(1)填空:A,C两处相距60米.
(2)求1分钟后d1关于t的函数关系式.
(3)若甲、乙两遥控车的距离小于10米时信号就会产生相互干扰,试探求什么时间两遥控车的信号会产生相互干扰?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在?ABCD中,AB=3,AC=4,BC=5,AE=2CE,求四边形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.一个点到圆的最大距离为9 cm,最小距离为3 cm,则圆的半径为(  )
A.3 cm或6 cmB.6 cmC.12 cmD.12 cm或6 cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某市为了鼓励居民节约用水,对居民生活用水的收费实行阶梯式计量水价的方法,具体规定如下:第一级为每户每月用水在20立方米以下(含20立方米),按每立方米3.1元收费;第二级为每户每月用水超过20立方米且低于30立方米(含30立方米).超过20立方米的部分按每立方米3.81元收费;第三级为每户每月用水超过30立方米,超过30立方米的部分按每立方米4.52元收费,现已知李老师家9月份交纳水费69.62元,李老师家9月份用水多少立方米?

查看答案和解析>>

同步练习册答案