【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不与B、C两点重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上取一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接AM、AN.
(1)若P为BC的中点,则sin∠CPM=________;
(2)求证:∠PAN的度数不变;
(3)当P在BC边上运动时,△ADM的面积是否存在最小值,若存在,请求出PB的长;若不存在,请说明理由.
【答案】(1);(2)证明见解析;(3)存在最小值,BP=2.
【解析】试题分析:(1)根据正方形的性质和勾股定理求出AP,根据正弦的定义得到sin∠BAP=,根据折叠的性质证明∠CPM=∠BAP,得到答案;
(2)证明Rt△AEN≌Rt△ADN,得到∠EAN=∠DAN,计算即可;
(3)设PB=x,根据相似三角形的性质求出DM,根据三角形的面积公式得到二次函数的解析式,然后将解析式转化为顶点式,即可得出答案.
试题解析:
解:(1)∵正方形ABCD的边长为4,P为BC的中点,
∴BP= PC=2,
∴AP==2,
∴sin∠BAP=,
由折叠的性质可知,∠BPA=∠EPA,∠CPM=∠FPM,
∴∠APM=(∠BPE+∠CPF)=90°,
∴∠BPA+∠CPM=90°,又∠BPA+∠BAP=90°,
∴∠CPM=∠BAP,
∴sin∠CPM=sin∠BAP=,
故答案为: ;
(2)解:由折叠的性质可知,∠AEP=∠B=90°,AE=AB,∠BAP=∠EAP,
∴AE=AD,
在Rt△AEN和Rt△ADN中,
AE=AD,AN=AN,
∴Rt△AEN≌Rt△ADN,
∴∠EAN=∠DAN,
∴∠PAN=∠BAD=45°;
(3)解:设PB=x,则PC=4﹣x,
∵∠CPM=∠BAP,∠ABP=∠PCM=90°,
∴△ABP∽△PCM,
∴,即,
解得,CM=﹣x2+x,
∴DM=4﹣(﹣x2+x)= x2﹣x+4,
∴△ADM的面积=×4×(x2﹣x+4)=(x﹣2)2+6,
∴当BP=2时,△ADM的面积存在最小值6.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于频率与概率有下列几种说法,其中正确的说法是( )
①“明天下雨的概率是90%”表示明天下雨的可能性很大;
②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;
③“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近;
④“某彩票中奖的概率是1%”表示买100张该种彩票不可能中奖.
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.
(1)玲玲到达离家最远的地方是什么时间?离家多远?
(2)她何时开始第一次休息?休息了多长时间?
(3)她骑车速度最快是在什么时候?车速多少?
(4)玲玲全程骑车的平均速度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF; ②点E到AB的距离是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正确的有()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.
(1)求甲摸到标有数字3的球的概率;
(2)这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BDBC;
(3)当△PCD的面积最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,
且∠ABM=∠BAM,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com