精英家教网 > 初中数学 > 题目详情
6.如图,已知菱形ABCD的对角线AC与BD相交于点O,AE垂直且平分边CD,垂足为E,求∠BCD的度数.

分析 直接利用线段垂直平分线的性质得出AC=AD,再利用菱形的性质以及等边三角形的判定与性质得出答案.

解答 解:∵AE垂直且平分边CD,
∴AC=AD,
∵四边形ABCD是菱形,
∴AD=DC,∠ACB=∠ACD,
∴△ACD是等边三角形,
∴∠ACD=60°,
∴∠BCD=120°.

点评 此题主要考查了菱形的性质以及等边三角形的判定与性质,得出△ACD是等边三角形是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.3$\sqrt{2}$-2$\sqrt{2}$=2$\sqrt{2}$,$\sqrt{3}$($\sqrt{3}$+$\frac{1}{\sqrt{3}}$)=4,$\root{3}{5}$+|-$\root{3}{5}$|=2$\root{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.二次函数y=3x2的图象向右平移一个单位后函数解析式为(  )
A.y=3x2+1B.y=3x2-1C.y=3(x-1)2D.y=3(x+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(-4,6),点E是BC的中点,点H在OA上,且AH=1,过点H且平行于y轴的HG与EB交于点G,现将矩形折叠,使顶点C落在HG上,并与HG上的点D重合,折痕为EF,点F为折痕与y轴的交点.CF=2$\sqrt{3}$.
(1)求点E和点D的坐标;
(2)求折痕EF所在直线的函数关系式;
(3)连接HC,求直线HC与EF的交点坐标.
(提示:$\frac{1}{2+\sqrt{3}}$=$\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$=2-$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).
(1)证明:四边形AECF是菱形;
(2)求菱形AECF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知CD⊥AB,垂足为D,EF⊥AB,垂足为F.
(1)求证:CD∥EF;
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.把直线y=-2x-1沿x轴向右平移2个单位,所得直线的函数表达式为y=-2x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知二次函数y=$\frac{1}{2}$x2-$\frac{3}{2}$x+m的图象C1与x轴有且只有一个公共点.
(1)求m的值;
(2)将C1向下平移若干个单位后得抛物线,若C2与x轴的一个交点为A(-1,0),求C2的函数关系式,并求C2与x轴另一个交点B的坐标;
(3)①若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围;
②若C2与y轴的交点为D,请直接写出∠ADB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某校九年级共有450名学生,为了了解该年级学生的数学解题能力情况,该校数学兴趣小组随机抽取了90人进行调查分析,并将抽取的学生的数学解题成绩进行分组,绘制如下频数分布表和成绩分布扇形统计图(图1):
该校90名学生数学解题成绩频数分布表
成绩划记频数
不及格9
及格正正正18
良好正正正正正正一36
优秀正正正正正27
合计90

(1)根据抽样调查的结果,将估计出该校九年级450名学生数学解题成绩情况在图2中绘制成条形统计图:
(2)请你结合上述统计的结果,提出一条合理化建议.

查看答案和解析>>

同步练习册答案