【题目】在平面直角坐标系中,在图中描出A(﹣2,﹣2),B(﹣8,6),C(2,1).请问三角形ABC的形状并求出三角形的面积.
科目:初中数学 来源: 题型:
【题目】为加大环境保护力度,某市在郊区新建了、两个垃圾处理厂来处理甲、乙两个垃圾中转站的垃圾.已知甲中转站每日要输出100吨垃圾,乙中转站每日要输出80吨垃圾,垃圾处理厂日处理垃圾量为70吨,垃圾处理厂日处理垃圾量为110吨.甲、乙两中转站运往、两处理厂的垃圾量和运费如下表.
垃圾量(吨) | 运费(元/吨) | |||
甲中转站 | 乙中转站 | 甲中转站 | 乙中转站 | |
垃圾处理厂 | ______ | 240 | 180 | |
垃圾处理厂 | ______ | 250 | 160 |
(1)设甲中转站运往垃圾处理厂的垃圾量为吨,根据信息填表.
(2)设总运费为元,求总运费(元)关于(吨)的函数关系式,并写出的取值范围.
(3)当甲、乙两中转站各运往、两处理厂多少吨垃圾时,总运费最省?最省的总运费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解析下列问题:
(1)本次调查的学生共有 人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则:①∠ABO的度数是 ;
②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(2)如图3,若AB⊥OM,则是否存在这样的X的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:分别与x轴、y轴交于点B、C,且与直线l2:交于点A.
(1)求出点A的坐标
(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式
(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线BD平分∠ABC,过点A作AE∥BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.
(1)求证:四边形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象经过点(3,2)。
(1)求这个二次函数的关系式;
(2)画出它的图象,并指出图象的顶点坐标;
(3)当x>0时,求使y≥2的x的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EF在AB上.
(1)求证:△AED∽△DCG;
(2)若矩形DEFG的面积为4,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com