【题目】如图,在Rt△ABC中,∠C=90°,BC=2AC,D,E,F分别为BC,AC,AB边上的点,BF=3AF,∠DFE=90°,若△BDF与△FEA的面积比为3:2,则△CDE与△DEF的面积比为_____.
【答案】5:12
【解析】
过点D、E分别作AB的垂线DG、EH,由BF=3AF及△BDF与△FEA的面积比为3:2,可求得EH和DG的数量关系,设FG=x,DG=a,则BG=2a,AH=a,EH=2a,先证明△DFG∽△FEH,用x和a表示出FH,再根据BF=3AF,列出方程,用含a的式子表示出x,然后用含a的式子表示出相关线段,进而表示出△CDE与△DEF的面积,两者相比即可得解.
解:如图,过点D、E分别作AB的垂线DG、EH交AB于点G,H
∵BF=3AF,△BDF与△FEA的面积比为3:2,
∴
∴EH=2DG
∵∠C=90°,BC=2AC
∴tan∠B=
∴BG=2DG
设FG=x,DG=a,则BG=2a,AH=a,EH=2a
∴AE==a
∵∠DFE=90°,
∴∠DFG+∠EFH=90°
又∵∠FEH+∠EFH=90°
∴∠DFG=∠FEH
又∵∠FGD=∠EHF=90°
∴△DFG∽△FEH
∴=
∴=
∴FH=
∵BF=3AF
∴2a+x=3(a+)
整理得:x2﹣ax﹣6a2=0
解得:x=3a或x=﹣2a(舍)
∴FH=,BA=4AF=4(a+)=
∵∠C=90°,BC=2AC
∴AC:BC:AB=1:2:
∴AC==,BC=2AC=
由勾股定理得:DF===a,
EF===
∴S△DEF=DFEF=×a×=
∵AC=,BC=,AE=a
CE=AC﹣AE=,CD=CB﹣BD=﹣=
∴S△CDE=CECD=××=
∴S△CDE:S△DEF=:=5:12
故答案为:5:12.
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若,求的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,的值是 .
(2)类比延伸
如图2,在原题的条件下,若求的值(用含有m的代数式表示).
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F. 若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,直线与轴,轴分别交于点,,当轴上的动点到直线的距离与到点的距离之和最小时,则点的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?
(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+bx+c的图象经过点A(2,0),B(5,0),过点D(0,)作y轴的垂线DP交图象于E、F.
(1)求b、c的值和抛物线的顶点M的坐标;
(2)求证:四边形OAFE是平行四边形;
(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为AB边上一点,且AD=1,点P从点C出发,沿射线CA以每秒1个单位长度的速度运动,以CP、DP为邻边作CPDE.设CPDE和△ABC重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒)(t>0)
(1)连结CD,求CD的长;
(2)当CPDE为菱形时,求t的值;
(3)求S与t之间的函数关系式;
(4)将线段CD沿直线CE翻折得到线段C′D′.当点D′落在△ABC的边上时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,下列说法正确的是( )①若∠AOB=∠COD,则CD=AB;②若CD=AB,则CD,AB所对的弧相等;③若CD=AB,则点O到CD,AB的距离相等;④若∠AOB+∠COD=180°,且CD=6,则AB=8.
A.①②③④B.①③④C.①②④D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com