精英家教网 > 初中数学 > 题目详情

【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.

原题:如图1,在平行四边形ABCD中,点EBC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若,求的值.

1)尝试探究

在图1中,过点EEHABBG于点H,则ABEH的数量关系是 CGEH的数量关系是 的值是

2)类比延伸

如图2,在原题的条件下,若的值(用含有m的代数式表示).

3)拓展迁移

如图3,梯形ABCD中,DCAB,点EBC的延长线上的一点,AEBD相交于点F ,求的值.

【答案】(1);(2);(3)

【解析】

1)根据△ABF∽△EHF得出,由EH是△BCG的中位线,得出CG=2EH,再由比例关系得出的值即可;

2)类比(1)的方法得到,再由CG=2EH得出的比值;

3)作出辅助线,类比(2)中方法得到,通过比例关系的转化得到的值即可.

解:(1)∵EHAB

∴△ABF∽△EHF

又∵

,即

CDAB

EH∥CD

EBC的中点,

EH是△BCG的中位线,

CG=2EH

CD=AB

故答案为:

2)如右图2所示,作于点,则

(3)如右图3所示,过点EEH//ABBD的延长线于点H,则有EH//AB//CD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线:的项点为,交轴于两点(点在点左侧),且

(1)求抛物线的函数解析式;

(2)过点的直线交抛物线于点,交轴于点,若的面积被轴分为1: 4两个部分,求直线的解析式;

(3)在(2)的情况下,将抛物线绕点逆时针旋转180°得到抛物线,点为抛物线上一点,当点的横坐标为何值时,为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量(件)与销售单价(元)之间的函数关系如图所示.

1)当销售单价定为50元时,求每月的销售件数;

2)设每月获得利润为(元),求每月获得利润(元)关于销售单价(元)的函数解析式;

3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的箱子里有四张外形相同的卡片卡片上分别标有数字﹣1135.摸出一张后,记下数字,再放回,摇匀后再摸出一张,记下数字.以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点.恰好在直线y=﹣x+4上的概率是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(10),点D的坐标为(02).延长CBx轴于点,作正方形;延长x轴于点,作正方形…按这样的规律进行下去,第2019个正方形的面积为(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点Ax轴的正半轴上,顶点Cy轴的正半轴上,点B在双曲线x0)上,点D在双曲线x0)上,点D的坐标是 33

1)求k的值;

2)求点A和点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,按以下步骤作图:①分别以 BC 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 MN;②作直线 MN AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,BC2ACDEF分别为BCACAB边上的点,BF3AF,∠DFE90°,若△BDF与△FEA的面积比为32,则△CDE与△DEF的面积比为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中反比例函数yb0)与二次函数yax2+bxa0)的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案