【题目】已知抛物线:的项点为,交轴于、两点(点在点左侧),且.
(1)求抛物线的函数解析式;
(2)过点的直线交抛物线于点,交轴于点,若的面积被轴分为1: 4两个部分,求直线的解析式;
(3)在(2)的情况下,将抛物线绕点逆时针旋转180°得到抛物线,点为抛物线上一点,当点的横坐标为何值时,为直角三角形?
【答案】(1);(2)直线的解析式为;(3)点横坐标为或或或时,为.
【解析】
(1)求抛物线l1的顶点P(0,-2)得OP=2,由求得BP的长,进而求得OB即点B坐标,代入抛物线l1的解析式即求得a的值.
(2)求点A坐标为(-4,0),设直线AC解析式为y=kx+b,把点A代入得b=4k,所以能用k表示点D坐标,进而用k表示△AOD和△BOD的面积.把直线AC解析式与抛物线l1解析式联立方程,即y相等时得到一个关于x的一元二次方程,解即为点A、C横坐标,利用根与系数的关系求出点C横坐标(用k表示),进而可用k表示C的纵坐标,再得到用k表示的△ABC面积.当k>0时,显然S△AOD:S四边形OBCD=1:4,即S△AOD=S△ABC,故得到关于k的方程,求解即得k的值.当k<0,则得到的方程与k>0时相同,求得的k不满足题意.综合即求得直线AC的解析式.
(3)由于不确定点B、D、M哪个为直角顶点,故需分三种情况讨论.设点M横坐标为m,①若∠BDM=90°,过M作MN⊥y轴于点N,可证△BDO∽△DMN,用m表示MN、DN的长,代入相似三角形对应边成比例即列得方程求m的值.②若∠DBM=90°,过点M作MQ⊥x轴于点Q,可证△BMQ∽△DBO,用m表示BQ、MQ的长,代入相似三角形对应边成比例即列得方程求m的值.③若∠BMD=90°,则点M在以BD为直径的圆除点B、D外的圆周上,但显然以AB为直径的圆与抛物线l2无交点,故此情况不存在满足的m.
(1)当时,
∴顶点,
∵,
∴
∴
∴
∴,代入抛物线得:
,解得,
∴抛物线的函数解析式为
(2)∵知抛物线交轴于、两点
∴、关于轴对称,即
∴
设直线解析式:点代入得:
∴
∴直线:,
∴
∵,整理得:
∴
∵
∴,
∴
∴
①若,则
∴
∴
解得:(舍去),
∴直线的解析式为
②若,则,
∴解得:(舍去),(舍去)
综上所述,直线的解析式为.
(3)由(2)得:,
∵抛物线绕点逆时针旋转得到抛物线
∴抛物线解析式为:
设点坐标为
①若,如图1,则 过作轴于点
∴,,
∴
∴
∴
∴,即
∴
解得:,
②若,如图2,过点作轴于点
∴,,
∴
∴
∴
∴,即
∴解得:,
③若,则点在以为直径的圆除点、外的圆周上
显然以为真径的圆与抛物线无交点,故此情况不存在满足的
综上所述,点横坐标为或或或时,为.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.
(1)求抛物线的解析式;
(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;
(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,点为的中点,以为底边的等腰按如图所示位置摆放,且.请仅用无刻度的直尺分别按下列要求作图(保留作图痕迹).
如图①,在上求作一点,使四边形为菱形;
如图②,过点作线段使得线段将的面积平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一个抛物线经过A(0,1),B(1,3),C(﹣1,1)三点.
(1)求这个抛物线的表达式及其顶点D的坐标;
(2)联结AB、BC、CA,求tan∠ABC的值;
(3)如果点E在该抛物线的对称轴上,且以点A、B、C、E为顶点的四边形是梯形,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l:y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为_______;点An的坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在正六边形中,有两点同时、同速从中点出发,P沿方向运动,Q点沿方向指向运动,10秒后,两点与多边形中心连线及多边形(延长线)所围成图形的面积如图(阴影部分的面积)有两部分为,则之间的数量关系是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com