精英家教网 > 初中数学 > 题目详情
(1997•浙江)如图,?ABCD中,对角线AC和BD交于点O,过O作OE∥BC交DC于点E,若OE=5cm,则AD的长为
10
10
cm.
分析:由?ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.
解答:解:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∵OE∥BC,
∴OE∥AD,
∴OE是△ACD的中位线,
∴AD=2OE=2×5=10(cm).
故答案为:10.
点评:此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•浙江)如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G,H,且EG+FH=EF.
(1)求线段EF的长;
(2)设EG=x,△AGE与△CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值范围,并求出S的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,AB∥CD,AD和BC交于点O,若∠A=42°,∠C=51°,则∠AOB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,锐角△ABC中,以BC为直径的半圆分别交AB,AC于点D,E,记△ADE的面积为S1,△ABC的面积为S2,则
S1
S2
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,⊙O1与⊙O2相交,大圆⊙O1的弦AB⊥O1O2,垂足是F,且交⊙O2于点C,D,过B作⊙O2的切线,E为切点,已知BE=DE,BD=m,BE=n,AC,CE的长是关于x的方程x2+px+q=0的两个根.
(1)求证:AC=BD;
(2)用含m,n的代数式分别表示p和q;
(3)如果关于x的方程qx2-(m2+mp)x+1=0有两个相等的实数根,且∠DEB=30°,求⊙O2的半径.

查看答案和解析>>

同步练习册答案