精英家教网 > 初中数学 > 题目详情
(1997•浙江)如图,锐角△ABC中,以BC为直径的半圆分别交AB,AC于点D,E,记△ADE的面积为S1,△ABC的面积为S2,则
S1
S2
=(  )
分析:如图,连接BE.构建直角△ABE,通过解该直角三角形求得cosA=
AE
AB
;然后通过相似三角形△AED∽△ABC的对应边的比成比例知
AE
AB
=
AD
AC
;最后结合三角形的面积公式分别求得△ADE、△ABC的面积.
解答:解:如图,连接BE.
∵BC为半圆的直径,
∴∠BEC=∠AEB=90°.
∴在直角△ABE中,cosA=
AE
AB

∵点D、B、C、E四点共圆,
∴∠ABC+∠DEC=180°.
∵∠DEC+∠AED=180°,
∴∠ABC=∠AED.
又∵∠A=∠A,
∴△AED∽△ABC,
AE
AB
=
AD
AC

∵S1=
1
2
AE•AD•sinA,S2=
1
2
AB•AC•sinA,
S1
S2
=
AE•AD
AB•AC
=
AE2
AB2
=cos2A.
故选D.
点评:本题考查了相似三角形的判定与性质、圆周角定理以及解直角三角形等知识点.解答该题时,借用了圆内接四边形的内对角互补的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•浙江)如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G,H,且EG+FH=EF.
(1)求线段EF的长;
(2)设EG=x,△AGE与△CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值范围,并求出S的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,?ABCD中,对角线AC和BD交于点O,过O作OE∥BC交DC于点E,若OE=5cm,则AD的长为
10
10
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,AB∥CD,AD和BC交于点O,若∠A=42°,∠C=51°,则∠AOB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,⊙O1与⊙O2相交,大圆⊙O1的弦AB⊥O1O2,垂足是F,且交⊙O2于点C,D,过B作⊙O2的切线,E为切点,已知BE=DE,BD=m,BE=n,AC,CE的长是关于x的方程x2+px+q=0的两个根.
(1)求证:AC=BD;
(2)用含m,n的代数式分别表示p和q;
(3)如果关于x的方程qx2-(m2+mp)x+1=0有两个相等的实数根,且∠DEB=30°,求⊙O2的半径.

查看答案和解析>>

同步练习册答案