精英家教网 > 初中数学 > 题目详情

【题目】由甲、乙两个工程队承包某校园绿化工程,甲、乙两队单独完成这项工程所需时间比是2:3,两队合做6天可以完成.

(1)求两队单独完成此工程各需多少天?

(2)甲乙两队合做6天完成任务后,学校付给他们30000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?

【答案】(1) 甲、乙队单独完成此工程分别需10天、15天;(2)18000,12000.

【解析】

(1)求工效,时间明显,一定是根据工作总量来列等量关系的.等量关系为:甲6天的工作总量+6天的工作总量=1;
(2)让30000乘以各自的工作量即可.

解:(1)设甲队单独完成此工程需x天,则乙队单独完成此工程需

根据题意得

解得x=10,

经检验x=10为原方程的解,

x=10时,

答:甲、乙队单独完成此工程分别需10天、15天;

(2)甲队所得报酬为:(元);

乙队所得报酬为:(元).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线上,且,,之间的距离为2 , ,之间的距离为3 ,则AC2= _______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC中,BE平分∠ABCAC边于点E,过点EDEBCAB于点D

(1)求证:△BDE为等腰三角形;

(2)若点DAB中点,AB=6,求线段BC的长;

(3)在图2条件下,若∠BAC=60°,动点P从点B出发,以每秒1个单位的速度沿射线BE运动,请直接写出图3当△ABP为等腰三角形时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正确的有(
A.1个
B.2 个
C.3 个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=2x2﹣2 x+1与坐标轴的交点个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在锐角三角形ABC直线lBC的中垂线射线m为∠ABC的角平分线直线lm相交于点P.若∠BAC=60°,ACP=24°,则∠ABP的度数是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(-4,1),B(-3,3),C(-1,2).

(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.

(2)在x轴上画出点P,使PA+PC最小.(不写作法保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.

(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=

(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案