精英家教网 > 初中数学 > 题目详情
10.计算:$\sqrt{48}$÷$\sqrt{3}$-$\sqrt{\frac{1}{5}}$×$\sqrt{60}$+(-$\frac{1}{4}$)-1

分析 根据二次根式的乘除法法则和负整数指数幂进行解答即可.

解答 解:$\sqrt{48}$÷$\sqrt{3}$-$\sqrt{\frac{1}{5}}$×$\sqrt{60}$+(-$\frac{1}{4}$)-1
=$4\sqrt{3}÷\sqrt{3}-\sqrt{12}+(-4)$
=4-$2\sqrt{3}-4$
=$-2\sqrt{3}$.

点评 本题考查二次根式的混合运算、负整数指数幂,解题的关键是明确二次根式的混合运算的计算方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.长春市轻轨3号线开通以来,极大缓解了城市的交通压力,据统计,每天轻轨的运载人数为16600人次,16600这个数用科学记数法表示为(  )
A.16.6×103B.1.66×104C.166×102D.1.66×105

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)如图1,当DE平分∠CDB时,求证:AD=AF.
(2)如图1,当DE平分∠CDB,且OF=1时,求正方形ABCD的边长.
(3)如图2,当E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=$\frac{1}{2}$BG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.
(1)求线段CF的长;
(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果△AMN为等腰直角三角形,求线段FM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,将边长为3$\sqrt{2}$的等边△ABC沿BC方向向右平移得到△A′B′C′,若△ABC与△A′B′C重叠部分面积为2$\sqrt{3}$,则此次平移的距离是(  )
A.3$\sqrt{2}$-2B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=(40$\sqrt{3}$-40)米,现要在E、F之间修一条笔直道路,求这条道路EF的长为40($\sqrt{3}$+1)米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图图案是我国古代窗格的一部分,其中“O”代表窗纸上所贴的剪纸,则第6个图中所贴剪纸“O”的个数为20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).
(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;
(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;
(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;
(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案