精英家教网 > 初中数学 > 题目详情
2.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=(40$\sqrt{3}$-40)米,现要在E、F之间修一条笔直道路,求这条道路EF的长为40($\sqrt{3}$+1)米.

分析 【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.

解答 【发现证明】证明:如图(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
$\left\{\begin{array}{l}{AG=AE}\\{∠GAF=∠FAE}\\{AF=AF}\end{array}\right.$,
∴△AFG≌△AFE(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF.

【类比引申】∠BAD=2∠EAF.
理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABM=∠D}\\{BM=DF}\end{array}\right.$,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
$\left\{\begin{array}{l}{AE=AE}\\{∠FAE=∠MAE}\\{AF=AM}\end{array}\right.$,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.

【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=80米.
根据旋转的性质得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即点G在 CD的延长线上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×$\frac{\sqrt{3}}{2}$=40$\sqrt{3}$,HF=HD+DF=40+40($\sqrt{3}$-1)=40$\sqrt{3}$,
故∠HAF=45°,
∴∠DAF=∠HAF-∠HAD=45°-30°=15°
从而∠EAF=∠EAD-∠DAF=90°-15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根据上述推论有:EF=BE+DF=80+40($\sqrt{3}$-1)=40($\sqrt{3}$+1)(米),
即这条道路EF的长为40($\sqrt{3}$+1).
故答案是:40($\sqrt{3}$+1).

点评 此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为(0,1)、(2,1),点C在边AB上(不与点B重合),设点C的横坐标为m,△BOC的面积为S,则下面能够反映S与m之间的函数关系的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AC是平行四边形ABCD的对角线.
(1)请按如下步骤在图中完成作图(保留作图痕迹):
①分别以A,C为圆心,以大于$\frac{1}{2}AC$长为半径画弧,弧在AC两侧的交点分别为P,Q;②连结PQ,PQ分别与AB,AC,CD交于点E,O,F.
(2)再连接AF、CE,求证:四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:$\sqrt{48}$÷$\sqrt{3}$-$\sqrt{\frac{1}{5}}$×$\sqrt{60}$+(-$\frac{1}{4}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.为筹备趣味运动会,李明去商店买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么李明最多可买7个球拍.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.连掷两枚质地均匀的骰子,它们的点数相同的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个盒子里装有除颜色外其余都相同的3个红球和2个白球,从中随机摸出一个球,记下颜色后放回,搅匀后,再摸第二个球,请利用画树状图或列表格的方法,求两次摸到的球的颜色相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.事件A:某射击运动员射击一次,命中靶心;事件B:明天太阳从西边升起;C.13名同学中至少有两名同学的出生月份相同.3个事件的概率分别记为P(A)、P(B)、P(C),则  P(A)、P(B)、P(C)的大小关系正确的是(  )
A.P(B)<P(A)<P(C)B.P(C)<P(B)<P(A)C.P(A)<P(B)<P(C)D.P(A)<P(C)<P(B)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图是一个圆柱体的示意图,则这个圆柱体的俯视图的面积是(  )
A.30B.60C.25πD.60π

查看答案和解析>>

同步练习册答案