精英家教网 > 初中数学 > 题目详情
14.一个盒子里装有除颜色外其余都相同的3个红球和2个白球,从中随机摸出一个球,记下颜色后放回,搅匀后,再摸第二个球,请利用画树状图或列表格的方法,求两次摸到的球的颜色相同的概率.

分析 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到的球的颜色相同的情况,再利用概率公式求解即可求得答案.

解答 解:画树状图得:

∵共有25种等可能的结果,两次摸到的球的颜色相同的有13种情况,
∴两次摸到的球的颜色相同的概率为:$\frac{13}{25}$.

点评 此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图,以BC为直径的半圆⊙O与△ABC的边AB、AC分别相交于点D、E.若∠A=80°,BC=4,则图中阴影部分图形的面积和为(  )
A.$\frac{64}{9}π$B.$\frac{32}{9}π$C.$\frac{16}{9}π$D.$\frac{8}{9}π$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=(40$\sqrt{3}$-40)米,现要在E、F之间修一条笔直道路,求这条道路EF的长为40($\sqrt{3}$+1)米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,给一幅长8m,宽5m的矩形风景画(图中阴影部分)镶一个画框,若设画框的宽均为xm,装好画框后总面积为70m2,则根据题意可列方程为(8+2x)(5+2x)=70.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图图案是我国古代窗格的一部分,其中“O”代表窗纸上所贴的剪纸,则第6个图中所贴剪纸“O”的个数为20.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是$\frac{12}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列各式计算正确的是(  )
A.a3+a4=a7B.(3a+b)2=9a2+b2C.(-ab32=a2b6D.a6b÷a2=a3b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.
(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)
(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.

查看答案和解析>>

同步练习册答案