精英家教网 > 初中数学 > 题目详情
5.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

分析 设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF中根据勾股定理列出关于x的方程,即可解决问题.

解答 解:设CE=x.
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
在Rt△ABF中,由勾股定理得:
AF2=52-32=16,
∴AF=4,DF=5-4=1.
在Rt△DEF中,由勾股定理得:
EF2=DE2+DF2
即x2=(3-x)2+12
解得:x=$\frac{5}{3}$.
故选B.

点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.小明在长为400米的环形跑道上跑步,跑第二圈比第一圈平均速度增加了25%,这样跑第二圈所用时间比第一圈少用了30秒.求小明跑第一圈时的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算或化简:
(1)($\frac{1}{3}$)-1-20140-|-2|+tan45°      
(2)(1+$\frac{3}{a-2}$)÷$\frac{a+1}{{a}^{2}-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AC是平行四边形ABCD的对角线.
(1)请按如下步骤在图中完成作图(保留作图痕迹):
①分别以A,C为圆心,以大于$\frac{1}{2}AC$长为半径画弧,弧在AC两侧的交点分别为P,Q;②连结PQ,PQ分别与AB,AC,CD交于点E,O,F.
(2)再连接AF、CE,求证:四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(-4,0)、点B(0,-8),直线AC与y轴交于点C(0,-4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.
(l)求抛物线所对应的函数表达式.
(2)若四边形PBCD为平行四边形,求点P的坐标.
(3)求点E横坐标的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:$\sqrt{48}$÷$\sqrt{3}$-$\sqrt{\frac{1}{5}}$×$\sqrt{60}$+(-$\frac{1}{4}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.为筹备趣味运动会,李明去商店买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么李明最多可买7个球拍.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个盒子里装有除颜色外其余都相同的3个红球和2个白球,从中随机摸出一个球,记下颜色后放回,搅匀后,再摸第二个球,请利用画树状图或列表格的方法,求两次摸到的球的颜色相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=7cm,DC=2cm,∠EBD=60°,则BE=3cm时,四边形BFCE是菱形.

查看答案和解析>>

同步练习册答案