分析 (1)直接利用全等三角形的判定方法得出△ABE≌△DCF(SAS),进而求出BE=FC,BE∥FC,即可得出答案;
(2)直接利用菱形的性质得出△EBC是等边三角形,进而得出答案.
解答
(1)证明:在△ABE和△DCF中,
$\left\{\begin{array}{l}{AB=DC}\\{∠A=∠D}\\{AE=DF}\end{array}\right.$,
∴△ABE≌△DCF(SAS),
∴BE=FC,∠ABE=∠DCF,
∴∠EBC=∠FCB,
∴BE∥FC,
∴四边形BFCE是平行四边形;
(2)解:当四边形BFCE是菱形,
则BE=EC,
∵AD=7cm,DC=2cm,AB=DC,
∴BC=3cm,
∵∠EBD=60°,EB=EC,
∴△EBC是等边三角形,
∴BE=3cm.
故答案为:3.
点评 此题主要考查了全等三角形的判定与性质以及菱形的性质,正确掌握菱形的性质是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com