精英家教网 > 初中数学 > 题目详情
6.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是$\frac{12}{5}$.

分析 根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.

解答 解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵$\frac{1}{2}$AP×BC=$\frac{1}{2}$AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=$\frac{24}{5}$
∴AM=$\frac{12}{5}$,
故答案为:$\frac{12}{5}$.

点评 本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.计算或化简:
(1)($\frac{1}{3}$)-1-20140-|-2|+tan45°      
(2)(1+$\frac{3}{a-2}$)÷$\frac{a+1}{{a}^{2}-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.为筹备趣味运动会,李明去商店买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么李明最多可买7个球拍.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个盒子里装有除颜色外其余都相同的3个红球和2个白球,从中随机摸出一个球,记下颜色后放回,搅匀后,再摸第二个球,请利用画树状图或列表格的方法,求两次摸到的球的颜色相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简再求值
(1)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2
(2)已知x2-(2x2-4y)+2(x2-y),其中x是最大负整数的倒数,且$xy=\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.事件A:某射击运动员射击一次,命中靶心;事件B:明天太阳从西边升起;C.13名同学中至少有两名同学的出生月份相同.3个事件的概率分别记为P(A)、P(B)、P(C),则  P(A)、P(B)、P(C)的大小关系正确的是(  )
A.P(B)<P(A)<P(C)B.P(C)<P(B)<P(A)C.P(A)<P(B)<P(C)D.P(A)<P(C)<P(B)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成$\left|\begin{array}{l}a\\ c\end{array}\right.\left.\begin{array}{l}b\\ d\end{array}\right|$,定义$\left|\begin{array}{l}a\\ c\end{array}\right.\left.\begin{array}{l}b\\ d\end{array}\right|$=$\frac{a}{d}-\frac{b}{c}$,上述记号就叫做2阶行列式.则$\left|\begin{array}{l}2\\{x^2}-4\end{array}\right.\left.\begin{array}{l}8\\ x-2\end{array}\right|$=$\frac{2}{x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=7cm,DC=2cm,∠EBD=60°,则BE=3cm时,四边形BFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)计算:|-2|+(2-π)0-4×${2}^{-2}-(2\sqrt{2})$2
(2)解方程:x2+4x-2=0.

查看答案和解析>>

同步练习册答案