精英家教网 > 初中数学 > 题目详情
16.计算或化简:
(1)($\frac{1}{3}$)-1-20140-|-2|+tan45°      
(2)(1+$\frac{3}{a-2}$)÷$\frac{a+1}{{a}^{2}-4}$.

分析 (1)本题涉及负整数指数幂、零指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
(2)先通分计算括号里面的除法,再将除法变为乘法,约分计算即可求解.

解答 解:(1)($\frac{1}{3}$)-1-20140-|-2|+tan45°
=3-1-2+1
=1;      
(2)(1+$\frac{3}{a-2}$)÷$\frac{a+1}{{a}^{2}-4}$
=$\frac{a-2+3}{a-2}$×$\frac{(a+2)(a-2)}{a+1}$
=$\frac{a+1}{a-2}$×$\frac{(a+2)(a-2)}{a+1}$
=a+2.

点评 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值、特殊角的三角函数值等考点的运算.同时考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图:某地有两所大学M、N和两条相交叉的公路a、b,现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)图中a=40.
(2)求出甲车行驶路程y(km)与时间x(h)之间的函数关系式.
(3)当两车恰好相距50km时,直接写出甲车行驶的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,以BC为直径的半圆⊙O与△ABC的边AB、AC分别相交于点D、E.若∠A=80°,BC=4,则图中阴影部分图形的面积和为(  )
A.$\frac{64}{9}π$B.$\frac{32}{9}π$C.$\frac{16}{9}π$D.$\frac{8}{9}π$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某校随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查进行了统计,并绘制了如下不完整的条形统计图和扇形统计图.

结合图中信息,解答下列问题:
(1)求本次共调查的学生人数.
(2)求被调查的学生中,最喜爱丁类图书的学生人数.
(3)求被调查的学生中,最喜爱甲类图书的人数占本次被调查人数的百分比.
(4)该学校共有学生1600人,估计该校最喜爱丁类图书的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)如图1,当DE平分∠CDB时,求证:AD=AF.
(2)如图1,当DE平分∠CDB,且OF=1时,求正方形ABCD的边长.
(3)如图2,当E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=$\frac{1}{2}$BG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知直线y=$\frac{1}{2}$x+m与x轴交于点A,与y轴交于点C,抛物线y=-$\frac{1}{2}$x2+bx+3过A、C两点,交x轴另一点B.
(1)如图1,求抛物线的解析式;
(2)如图2,P、Q两点在第二象限的抛物线上,且关于对称轴对称,点F为线段AP上一点,2∠PQF+∠PFQ=90°,射线QF与过点A且垂直x轴的直线交于点E,AP=QE,求PQ长;
(3)如图3,在(2)的条件下,点D在QP的延长线上,DP:DQ=1:4,点K为射线AE上一点连接QK,过点D作DM⊥QK垂足为M,延长DM交AB于点N,连接AM,当∠AMN=45°时,过点A作AR⊥DN交抛物线于点R,求R点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是$\frac{12}{5}$.

查看答案和解析>>

同步练习册答案