精英家教网 > 初中数学 > 题目详情
x=2
y=-2
是二元一次方程组的解,则这个方程组是(  )
分析:根据方程组解的定义,找出各选项中不合适的方程,然后选择答案即可.
解答:解:A、把x=2,y=-2代入x-3y=2+6=8,不是方程x-3y=5的解,故不是方程组的解,故本选项错误;
B、把x=2,y=-2代入2x-y=4+2=6≠5,故不是方程2x-y=5的解,故不是方程组的解,故本选项错误;
C、把x=2,y=-2代入y=x-3,不是方程的解,故不是方程组的解,故本选项错误;
D、把x=2,y=-2代入两个方程都适合,故本选项正确.
故选D.
点评:本题考查了二元一次方程组的解,是基础题,熟记概念找出各选项中方程组的解不适合的方程是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
为圆心,
9
9
为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
为圆心,
1
1
为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是
3
3
(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

若最简二次根式
x+1x+y-1
3x+2y-5
是同类根式,则x=
1
1
,y=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

若最简二次根式
x-yx+y-1
3x+2y-5
是同类根式,则xy=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以______为圆心,______为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以______为圆心,______为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是______.
(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是______(直接写出结果).

查看答案和解析>>

科目:初中数学 来源:2013年广东省中考数学模拟试卷(十五)(解析版) 题型:解答题

材料一:在平面直角坐标系中,如果已知A,B两点的坐标为(x1,y1)和(x2,y2),设AB=t,那么我们可以通过构造直角三角形用勾股定理得出结论:(x1-x22+(y1-y22=t2
材料二:根据圆的定义,圆是到定点的距离等于定长的所有点的集合(其中定点为圆心,定长为半径).如果把圆放在平面直角坐标系中,我们设圆心坐标为(a,b),半径为r,圆上任意一点的坐标为(x,y),那么我们可以根据材料一的结论得出:(x-a)2+(y-b)2=r2,这个二元二次方程我们把它定义为圆的方程.比如:以点(3,4)为圆心,4为半径的圆,我们可以用方程(x-3)2+(y-4)2=42来表示.事实上,满足这个方程的任意一个坐标(x,y),都在已知圆上.
认真阅读以上两则材料,回答下列问题:
(1)方程(x-7)2+(y-8)2=81表示的是以______为圆心,______为半径的圆的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以______为圆心,______为半径的圆的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F为常数)表示的是一个圆的方程,则D,E,F要满足的条件是______.
(3)方程x2+y2=4所表示的圆上的所有点到点(3,4)的最小距离是______(直接写出结果).

查看答案和解析>>

同步练习册答案