精英家教网 > 初中数学 > 题目详情
如图(六)所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,则上底DC的长是            cm.
CD=2
∵AB∥DC ∴∠DCA=∠CAB ∵AC⊥BC,∠B=60°  ∴∠DAC=∠CAB=∴∠DCA= ∴AD="CD " ∵AD=BC ="2 " ∴CD=2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题10分) (湖南湘西24,10分)如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.
(1)求AC的长.
(2)求∠AOB的度数.
(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011?金华)如图,在?ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.



 
图1                      图2                     备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;
(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠B=60°,∠ADC=105°,AD=6,且AC⊥AB,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在四边形ABCD中, AD=BC,∠A、∠B均为锐角.

当∠A=∠B时,则CD与A B的位置关系是CD     AB,大小关系是CD     AB;
当∠A>∠B时,(1)中C D与A B的大小关系是否还成立,证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O。

(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图②,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R。四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图9,点P是正方形ABCD边AB上一点(不与点A.B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE, PE交边BC于点F.连接BE、DF。

(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当的值等于多少时.△PFD∽△BFP?并说明理由.

查看答案和解析>>

同步练习册答案