精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;

(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

【答案】(1)y=﹣x2+x+4;(2)N(3,0);(3)OM=AC.

【解析】

试题分析:(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;

(2)可设N(n,0),则可用n表示出ABN的面积,由NMAC,可求得,则可用n表示出AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;

(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在RtAOB和RtAOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.

试题解析:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得

解得

二次函数的表达式为y=﹣x2+x+4;

(2)设点N的坐标为(n,0)(﹣2n8),

则BN=n+2,CN=8﹣n.

B(﹣2,0),C(8,0),

BC=10,

在y=﹣x2+x+4令x=0,可解得y=4,

点A(0,4),OA=4,

SABN=BNOA=(n+2)×4=2(n+2),

MNAC,

0,

当n=3时,即N(3,0)时,AMN的面积最大;

(3)当N(3,0)时,N为BC边中点,

MNAC,

M为AB边中点,

OM=AB,

AB=,AC=

AB=AC,

OM=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以下列各组数为三角形的边长,能构成直角三角形的是(

A. 8,12,17; B. 6,8,10; C. 1,2,3; D. 5,12,9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.﹣3+2=﹣5
B.3×(﹣2)=﹣1
C.﹣1﹣1=﹣2
D.﹣32=9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五边形的外角和等于 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果|a|>0,则a(
A.一定是正数
B.一定是负数
C.一定不是负数
D.不等于0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2x﹣41﹣3x是同一个数的平方根,则x的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;

(2)分别求出李燕和刘凯获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为(  )
A.30°
B.40°
C.50°
D.70°

查看答案和解析>>

同步练习册答案