【题目】如图,抛物线与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.
【答案】(1),D(2,8);(2)F(﹣1,)或(﹣3,);(3)Q(2,)或(2,).
【解析】(1)将点B(6,0)、C(0,6)代入中,得:,解得:,∴抛物线的解析式为.
∵=,∴点D的坐标为(2,8).
(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.
∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.
∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=OB=3,∴点F′(0,3)或(0,﹣3).
设直线BF的解析式为y=kx±3,则有0=6k+3或0=6k﹣3,解得:k=﹣或k=,∴直线BF的解析式为或.联立直线BF与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F的坐标为(﹣1,);
解方程组②得:或(舍去),span>∴点F的坐标为(﹣3,).
综上可知:点F的坐标为(﹣1,)或(﹣3,).
(3)设对角线MN、PQ交于点O′,如图2所示.
∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线对称轴上,设点Q的坐标为(2,2n),则点M的坐标为(2﹣n,n).
∵点M在抛物线的图象上,∴,即,解得:=,=,∴点Q的坐标为(2,)或(2,).
科目:初中数学 来源: 题型:
【题目】如图1(注:与图2完全相同),二次函数的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com