精英家教网 > 初中数学 > 题目详情

【题目】将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第象限.

【答案】四
【解析】解:将正比例函数y=2x的图象向上平移3个单位后得到的一次函数的解析式为:y=2x+3, ∵k=2>0,b=3>0,
∴该一次函数图象经过第一、二、三象限,即该一次函数图象不经过第四象限.
所以答案是:四.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.

(1)求该抛物线所对应的函数关系式;

(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).

①当t=时,判断点P是否在直线ME上,并说明理由;

②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(1)求抛物线的解析式及点D的坐标;

(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;

(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.
阅读回答下列问题:

(1)方案(Ⅰ)是否可行?请说明理由.
(2)方案(Ⅱ)是否可行?请说明理由.
(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校八年级1000名学生视力情况,从中抽取了300名学生的视力情况进行统计,本次抽样调查的样本是(  )

A. 1000名学生 B. 该校每个八年级学生的视力情况

C. 300 D. 被调查的300名学生的视力情况

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.
(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;

(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品包装袋上标有“净含量385±5”,这包食品的合格净含量范围是克~390克.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列不能判断四边形ABCD是平行四边形的是(  )

A. AB=CD,AD=BC B. ABCD,AD=BC

C. ABCD,ADBC D. A=C,B=D

查看答案和解析>>

同步练习册答案