分析 过A作AE⊥BC于E,根据等腰三角形的性质得到BE=CE=4,由DE垂直平分AB,得到BD=$\frac{1}{2}$AB=$\sqrt{5}$,根据相似三角形的性质得到$\frac{{S}_{△BED}}{{S}_{△ABE}}$=($\frac{BD}{BE}$)2=$\frac{5}{16}$,求得$\frac{{S}_{△BED}}{{S}_{△ABC}}$=$\frac{5}{32}$,于是得到结论.
解答 解:过A作AE⊥BC于E,
∵AB=AC=2$\sqrt{5}$,BC=8,
∴BE=CE=4,
∵DE垂直平分AB,
∴BD=$\frac{1}{2}$AB=$\sqrt{5}$,
∵∠BDE=∠AEB=90°,∠B=∠B,
∴△BED∽△ABE,
∴$\frac{{S}_{△BED}}{{S}_{△ABE}}$=($\frac{BD}{BE}$)2=$\frac{5}{16}$,
∵S△ABC=2S△ABE,
∴$\frac{{S}_{△BED}}{{S}_{△ABC}}$=$\frac{5}{32}$,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{5}{27}$.
故答案为:$\frac{5}{27}$.
点评 本题考查了相似三角形的判定和性质,等腰三角形的性质,线段垂直平分线的性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
-2 | -4 | 3x+6 |
4 | x | |
-x-6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$-2 | B. | $\sqrt{5}-2$ | C. | $\sqrt{5}-1$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com