精英家教网 > 初中数学 > 题目详情

【题目】如图,点是ΔABC内一点,连接OBOC,并将ABOBOCAC的中点依次连结,得到四边形

1)求证:四边形是平行四边形;

2)若的中点,OM=5,∠OBC与∠OCB互余,求DG的长度.

【答案】1)见解析;(210

【解析】

1)根据三角形的中位线性质求出DGBCEFBCDG=BCEF=BC,求出DGEFDG=EF,根据平行四边形的判定得出即可;
2)求出∠BOC=90°,根据直角三角形的斜边上中线性质得出EF=2OM,即可求出答案.

1)证明: ∵点DEFG分别是ABOBOCAC的中点,

DGBCEFBCDG=BCEF=BC

DGEFDG=EF

∴四边形DEFG是平行四边形;

2)解:由 1)知:四边形DEFG是平行四边形,

DG=EF

OBC与∠OCB互余,

∴∠OBC+OCB=90°

∴∠BOC=90°

MEF的中点,OM=5

OM=EF,即EF=2OM=2×5=10

DG=10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学响应阳光体育活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.

(1)求购买一个足球,一个篮球分别需要多少元?

(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.

(1)求出k,bm的值.

(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是 ________.

(3)P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形一个角的平分线分矩形一边为2cm3cm两部分,则这个矩形的面积为(

A.10cm2B.15cm2C.12cm2D.10cm215cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:

根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如扇形图所示,每得一票记作1分.

l)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到 0.01 ?

2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么谁将被录用?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°

(1)若点C在优弧BD上,求∠ACD的大小;

(2)若点C在劣弧BD上,直接写出∠ACD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.

(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;

(2)若菜园面积为384 m2,求x的值;

(3)求菜园的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线AByx4x轴于点A,交y轴于点B.直线CDy=-x1与直线AB相交于点M,交x轴于点C,交y轴于点D

(1)直接写出点B和点D的坐标.

(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求Sx之间的函数关系,并指出x的取值范围.

(3)S10时,平面直角坐标系内是否存在点E,使以点BEPM为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案