【题目】矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
【答案】D
【解析】
根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=2cm,DE=3cm和AE=3cm,DE=2cm两种情况即可求得矩形的边长,从而求解.
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AB=AE,
当AE=2cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=2cm.
∴矩形ABCD的面积是:2×5=10cm2;
当AE=3cm,DE=2cm时,AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面积是:5×3=15cm2.
故矩形的面积是:10cm2或15cm2.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形, AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.
(1)请说明:DE=DF;
(2)请说明:BE2+CF2=EF2;
(3)若BE=6,CF=8,求△DEF的面积(直接写结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD的对角线相交于点O,∠COE=45°,过点C作CE⊥BD于点E,
(1)如图1,若CB=1,求△CED的面积;
(2)如图2,过点O作OF⊥DB于点O,OF=OD,连接FC,点G是FC中点,连接GE,求证:DC=2GE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先仔细阅读材料,再尝试解决问题:我们在求代数式的最大或最小值时,通过利用公式对式子作如下变形:
,
因为,
所以,
因此有最小值2,
所以,当时,,的最小值为2.
同理,可以求出的最大值为7.
通过上面阅读,解决下列问题:
(1)填空:代数式的最小值为______________;代数式的最大值为______________;
(2)求代数式的最大或最小值,并写出对应的的取值;
(3)求代数式的最大或最小值,并写出对应的、的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数(利润=售价﹣制造成本).
(1)写出每月的利润w(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?
(3)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是ΔABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点、、、依次连结,得到四边形.
(1)求证:四边形是平行四边形;
(2)若为的中点,OM=5,∠OBC与∠OCB互余,求DG的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为;②足球飞行路线的对称轴是直线;③足球被踢出时落地;④足球被踢出时,距离地面的高度是.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com