【题目】某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数(利润=售价﹣制造成本).
(1)写出每月的利润w(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?
(3)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
【答案】(1)w= -2x2+136x-1800;(2)销售单价定为25 元或43 元,厂商每月能获得350万元的利润;(3)当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元.
【解析】
(1)根据每月的利润z=(x-18)y,再把y=-2x+100代入即可求出z与x之间的函数解析式,
(2)把z=350代入z=-2x2+136x-1800,解这个方程即可;
(3)把函数关系式变形为顶点式运用二次函数的性质求出最值.
(1)w= (x -18 )y= (x -18 )(-2x+100 )= -2x2+136x-1800 ,
∴w 与x 之间的函数解析式为w= -2x2+136x-1800 .
(2)由w=350 ,得350= -2x2+136x -1800 ,
解得x1=25 ,x2=43
所以,销售单价定为25 元或43 元,厂商每月能获得350万元的利润.
(3)将w =-2x2+136x-1800 配方,得w= -2(x-34 )2+512 ,
∵a=﹣2<0,∴函数有最大值
∴当x=34时,w最大值为512
因此,当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元.
科目:初中数学 来源: 题型:
【题目】某校举办了一次趣味数学竞赛,满分分,学生得分均为整数,成绩达到分及以上为合格,达到分及以上为优秀这次竞赛中,甲、乙两组学生成绩如下(单位:分).
甲组:,,,,,,,,,
乙组:,,,,,,,,,
(1)
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 68分 | a | 376 | 90% | 30% |
乙组 | b | c | 196 | 80% | 20% |
以上成绩统计分析表中________分,_________分,________分;
(2)小亮同学说:这次竞赛我得了分,在我们小组中排名属中游略偏上!观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由.
(3)如果你是该校数学竞赛的教练员,现在需要你选择一组同学代表学校参加复赛,你会选择哪一组?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是( )
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若∠P=40°,则∠ACB的度数为_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:BC是⊙F的切线;
(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;
(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1)若点C在优弧BD上,求∠ACD的大小;
(2)若点C在劣弧BD上,直接写出∠ACD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、
B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com