精英家教网 > 初中数学 > 题目详情
(本小题满分14分)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.

(1)求∠OAB的度数.
(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.
(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.

(1)∠OAB=30°
(2)t=3时,PM与⊙O‘相切
(3)
(4)当t=2,t=3.6,t=-18时,△APQ是等腰三角形.
解:(1)在Rt△AOB中:
tan∠OAB=
∴∠OAB=30°
(2)如图10,连接O‘P,O‘M. 当PM与⊙O‘相切时,有∠PM O‘=∠PO O‘=90°,
△PM O‘≌△PO O‘

由(1)知∠OBA=60°
∵O‘M= O‘B
∴△O‘BM是等边三角形
∴∠B O‘M=60°可得∠O O‘P=∠M O‘P=60°
∴OP=" O" O‘·tan∠O O‘P =6×tan60°=
又∵OP=t
t=,t=3
即:t=3时,PM与⊙O‘相切.
(3)如图9,过点Q作QE⊥x于点E
∵∠BAO=30°,AQ=4t
∴QE=AQ=2t
AE=AQ·cos∠OAB=4t×
∴OE=OA-AE=-t
∴Q点的坐标为(-t,2t)
S△PQR= S△OAB -S△OPR -S△APQ -S△BRQ
=
=
=  (
当t=3时,S△PQR最小=
(4)分三种情况:如图11.

1当AP=AQ1=4t时,
∵OP+AP=
t+4t=
∴t=
或化简为t=-18
2当PQ2=AQ2=4t时
过Q2点作Q2D⊥x轴于点D,
∴PA="2AD=2A" Q2·cosA=t
t+t =
∴t=2
3当PA=PQ3时,过点P作PH⊥AB于点H
AH=PA·cos30°=(-t)·=18-3t
AQ3=2AH=36-6t
得36-6t=4t,
∴t=3.6
综上所述,当t=2,t=3.6,t=-18时,△APQ是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题


查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C坐标是(   ,    ),当点D运动8.5秒时所在位置的坐标是(   ,    );
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值
时,S最大;
(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时
出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):

题28(a)图                 题28(b)图

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(满分8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1)。

(1)画出△ABC关于直线y=1轴对称的△A1B1C1,并写出点C1的坐标;
(2)以原点O为对称中心,画出与△A1B1C1关于点O中心对称的△A2B2C2,并写点C2坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,华庆号船位于航海图上平面直角坐标系中的点A(10,2)处时,点C、海岛B的位置在y轴上,且

(1)求这时船A与海岛B之间的距离;
(2)若海岛B周围16海里内有海礁,华庆号船继续沿AC向C航行有无触礁危险?请说明理由(7分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在一次夏令营活动中,小霞同学从营地点出发,要到距离地去,先沿北偏东方向到达地,然后再沿北偏西方向走了到达目的地,此时小霞在营地
A.北偏东方向上B.北偏东方向上
C.北偏东方向上D.北偏西方向上

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,

试解决下列问题:
(1)填空:点D坐标为        
(2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;
(3)等式BO=BD能否成立?为什么?
(4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,已知两个不平行的向量
a
b
.求作:
1
2
a
+2
b
.(写出结论,不要求写作法)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是一副三角板,使它们两个直角互相重合叠放在一起,∠D=30°,∠B=45°,那么两条斜边所形成的钝角∠AOD=______度.

查看答案和解析>>

同步练习册答案