【题目】抛物线 y=x2+mx+n 过点(-1,8)和点(4,3)且与 x 轴交于 A,B 两点, 与 y 轴交于点 C
(1)求抛物线的解析式;
(2)如图1,AD 交抛物线于 D,交直线 BC 于点 G,且 AG=GD,求点 D 的坐标;
(3)如图2,过点 M(3,2)的直线交抛物线于 P,Q,AP 交 y 轴于点 E,AQ 交y 轴于点 F,求OE·OF的值.
【答案】(1)y=x2-4x+3;(2)D(, )或(,);(3)2.
【解析】
(1)利用待定系数法求函数解析式即可;(2)先求得点A、B、C的坐标及直线BC的解析式,过点G作GR⊥x轴于点R,过点D作DK⊥x轴于点K(如图),由AG=GD,可得GR=DK,设点D的坐标为(a,a2-4a+3),则点G的坐标为( ,-+3),可得方程-+3=(a2-4a+3),解方程求得a的值,即可得点D的坐标;(3)设AQ的解析式为y=ax-a,AP的解析式为y=bx-b,分别根抛物线的解析式联立,求得点P、Q的横坐标,在设PQ的解析式为y=kx+b,代入M(3,2)可得y=kx+2-3k. 将PQ的解析式为与抛物线解析式联立得到关于x的一元二次方程,然后依据一元二次方程根与系数的关系可求得ab=﹣2,再由ab的值可得到OEOF的值即可.
(1)把点(-1,8)和点(4,3)代入y=x2+mx+n得,
,
解得,
∴y=x2-4x+3;
(2)令x2-4x+3=0,解得x=1或x=3,
∴A(1,0),B(3,0);
把x=0代入y=x2-4x+3得y=3,
∴C(0,3);
∴直线BC的解析式为y=-x+3.
如图,过点G作GR⊥x轴于点R,过点D作DK⊥x轴于点K,
∴GR∥DK,
∵AG=GD,
∴GR=DK,
设点D的坐标为(a,a2-4a+3),则点G的坐标为( ,-+3),
即GR=-+3,DK= a2-4a+3,
∴-+3=(a2-4a+3),
整理得a2-3a-2=0,
解得,,,
∴D(, )或(,).
(3)∵A(1,0),
设AQ的解析式为y=ax-a,AP的解析式为y=bx-b,
∴ ,解得x=1或x=a+3,
∴点Q的横坐标为a+3,
同理求得点P的横坐标为b+3.
设PQ的解析式为y=kx+b,把点 M(3,2)代入可得3k+b=2,即b=2-3k.
∴y=kx+2-3k.
∴kx+2-3k= x2-4x+3,即x2-(4+k)x+1+3k=0,
∵P、Q是抛物线y=x2-4x+3与直线PQ的交点,
∴a+3、b+3是方程x2-(4+k)x+1+3k=0的两个根,
∴a+3+b+3=4+k,(a+3)(b+3)=1+3k,
即a+b=k-2,ab+3(a+b)+9=1+3k,
∴ab+3(k-2)+9=1-3k,
整理得ab=-2,
∵OE=-b,OF=a,
∴OEOF=-ab=2.
科目:初中数学 来源: 题型:
【题目】一元二次方程:M:ax2+bx+c=0; N:cx2+bx+a=0,其中ac≠0,a≠c,以下四个结论:
①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
②如果方程M有两根符号相同,那么方程N的两根符号也相同;
③如果m是方程M的一个根,那么是方程N的一个根;
④如果方程M和方程N有一个相同的根,那么这个根必是x=1
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,.点从开始沿边向点以的速度移动,与此同时,点从点开始沿边向点以的速度移动.如果、分别从、同时出发,当点运动到点时,两点停止运动,问:
经过几秒,的面积等于?
(2)的面积会等于吗?若会,请求出此时的运动时间;若不会,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 1 的正方形组成的网格中,△ ABC的顶点均在格点上,A(3,2), B(4, 3), C(1, 1)
(1)画出△ABC关于y轴对称的图形△ A′B′C′
(2)写出A′、B′、C′的坐标(直接写出答案) A′ ;B′ ;C′ ;
(3)写出△ A′B′C′的面积为 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线
当抛物线的顶点在轴上时,求该抛物线的解析式;
不论取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
若有两点,,且该抛物线与线段始终有交点,请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠B=30°,D为BC上一点,且∠DAB=45°.
(1) 求∠DAC的度数.
(2) 求证:△ACD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是( )
A. 小亮从袋中任意摸出一个球,摸出白球的概率是1
B. 小亮从袋中任意摸出一个球,摸出白球的概率是0
C. 在这次实验中,小亮摸出白球的频率是1
D. 由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com