精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=ax+b的图象与反比例函数(x0)的图象交于点P(m,4),与x轴交于点A(﹣3,0),与y轴交于点C,PBx轴于点B,且AC=BC.

(1)求反比例函数与一次函数的解析式;

(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.

【答案】(1);(2)D(6,2).

【解析】

试题分析:(1)先根据题意得出P点坐标,把点P(3,4)代入反比例函数即可得出k的值,再将A、P两点的坐标代入y=ax+b求出kb的值,故可得出一次函数的解析式,进而得出结论;

(2)先求得y=2时,x=6,再根据菱形的判定即可求解.

试题解析:(1)AC=BC,COAB,A(﹣3,0),O为AB的中点,即OA=OB=3,P(3,4),B(3,0),将P(3,4)代入反比例解析式得:k=12,即反比例解析式为

将A(﹣3,0)与P(3,4)代入y=ax+b得:,解得:一次函数解析式为

(2)如图所示,把y=2代入中,得x=6,得D(6,2),PB垂直且平分CD,则四边形BCPD为菱形.

则点D(6,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若a、b是等腰△ABC的两边,且a是不等式组 的最小整数解,b=46×0.256+(﹣ 2﹣(3721﹣4568)0 , 求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,写出点B和点C的坐标;
(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题如图1,在边长为a的正方形中
(1)画出两个长方形阴影,则阴影部分的面积是(写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的长是 , 宽是 , 面积是(写成多项式乘法的形式);

(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达);
(4)运用你所得到的公式计算:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,
(1)求证:DE=BD+CE.
(2)如果是如图2这个图形,我们能得到什么结论?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD(凸四边形)中, AB=AD=BC,∠BAD=90°,连结对角线 AC,当△ACD为等腰三角形时,则∠BCD的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图锐角△ABC,若∠ABC=40°,∠ACB=70°,点D、E在边AB、AC上,CD与BE交于点H.

(1)若BE⊥AC,CD⊥AB,求∠BHC的度数.
(2)若BE、CD平分∠ABC和∠ACB,求∠BHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF∥AD,∠1=∠2, ∠BAC=70°,将求∠AGD的过程填空完整。

解:∵EF∥AD
∴∠2=
又∵∠1=∠2
∴∠1=∠3(
∴AB∥
∵∠BAC+=180°(
∵∠BAC=70° ∴∠AGD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题:探索发现
(1)分解因式:①(1+x)+x(1+x)=()()=(2
②(1+x)+x(1+x) + x(1+x)2
③(1+x)+x(1+x) + x(1+x)2 + x(1+x)3
(2)根据(1)的规律,直接写出多项式:(1+x) +x(1+x) + x(1+x)2+…+ x(1+x)2017分解因式的结果:
(3)变式: = .

查看答案和解析>>

同步练习册答案