【题目】如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C.
(1)求k的值;
(2)求△ABC的面积.
【答案】(1);(2) △ABC的面积为(或4.5).
【解析】
(1)直接把点A代入y=kx-6求得答案即可;
(2)利用直线y=-3x+3求得点B坐标,进一步与直线y=x-6建立方程组求得x、y的数值得出点C的坐标;利用点的坐标求得AB,根据三角形的面积计算公式求得答案即可
解:(1)∵直线y=kx-6经过点A(4,0),
∴4k-6=0,即k=;
(2)∵直线y=-3x+3与x轴交于点B,根据在
x轴上的点纵坐标y=0,在y轴上的点横坐标x=0.
∴-3x+3=0,解得x=1. 点B坐标为(1,0).
由于两直线交于点C,所以有
,解得. ∴点C坐标为(2,-3).
∴△ABC面积为:=(或4.5)
答:△ABC的面积为(或4.5).
科目:初中数学 来源: 题型:
【题目】如图,有一块四边形田地ABCD,∠D=90°,AB=13m,BC=12m,CD=3m,DA=4m,则该四边形田地ABCD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.
(1)判断△ABE的形状,并证明你的结论;
(2)用含b代数式表示四边形ABFE的面积;
(3)求证:a2+b2=c2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点的直线与直线;相交于点.
()求直线的表达式.
()过动点且垂于轴的直线与、的交点分别为,,当点位于点上方时,写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P、Q分别是边长为4cm的等边的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是,设运动时间为t秒.
连接AQ、CP交于点M,则在P、Q运动的过程中,变化吗:若变化,则说明理由,若不变,则求出它的度数;
连接PQ,
当秒时,判断的形状,并说明理由;
当时,则______秒直接写出结果
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,正确的有( )
①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;
②有一个内角等于其他两个内角和的三角形是直角三角形;
③三角形的三边分别为a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学研究课上,老师出示如图1所示的长方形纸条,,,然后在纸条上任意画一条截线段,将纸片沿折叠,与交于点,得到,如图2所示:
(1)若,求的大小;
(2)改变折痕位置,判断的形状,并说明理由;
(3)爱动脑筋的小明在研究的面积时,发现边上的高始终是个不变的值.根据这一发现,他很快研究出的面积最小值为,求的大小;
(4)小明继续动手操作,发现了面积的最大值,请你求出这个最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com