【题目】在数学研究课上,老师出示如图1所示的长方形纸条,,,然后在纸条上任意画一条截线段,将纸片沿折叠,与交于点,得到,如图2所示:
(1)若,求的大小;
(2)改变折痕位置,判断的形状,并说明理由;
(3)爱动脑筋的小明在研究的面积时,发现边上的高始终是个不变的值.根据这一发现,他很快研究出的面积最小值为,求的大小;
(4)小明继续动手操作,发现了面积的最大值,请你求出这个最大值.
【答案】(1)∠MKN=40°;(2)等腰三角形;(3)45°或135°;(4)△MNK的面积最大值为1.3.
【解析】
(1)根据矩形的性质和折叠的性质求出∠KNM,∠KMN的度数,根据三角形内角和即可求解;
(2)利用翻折变换的性质以及两直线平行内错角相等得出KM=KN;
(3)利用当△KMN的面积最小值为时,KN=BC=1,故KN⊥B′M,得出∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°;
(4)分情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合;情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC两种情况讨论求解.
(1)如图1,
∵四边形ABCD是长方形,
∴AM∥DN,
∴∠KNM=∠1,
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°;
(2)等腰三角形,理由如下:
∵AM∥BN,∴∠1=∠MND,
∵将纸片沿MN折叠,∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN,
故的形状是等腰三角形;
(3)如图2,当△KMN的面积最小值为时,KN=BC=1,故KN⊥B′M,
∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,
同理当将纸条向下折叠时,∠1=∠NMB=135°,
所以∠1的度数为45°或135°;
(4)分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合,
MK=MB=x,则AM=5﹣x,
由勾股定理得12+(5﹣x)2=x2,
解得x=2.6,
∴MD=ND=2.6,
S△MNK=S△MND=×1×2.6=1.3;
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC,
MK=AK=CK=x,则DK=5﹣x,
同理可得MK=NK=2.6,
∵MD=1,
∴S△MNK=×1×2.6=1.3,
所以△MNK的面积最大值为1.3.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.
(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=BC.延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系并说明理由;
(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A的对应点A2的坐标为(0,4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点P作PM^AD,PN^CD,垂足分别为M、N。
(1)求证:ADB=CDB;
(2)若ADC=90°,求证:四边形MPND是正方形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD=12,
(1)试说明BD⊥CD
(2)求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com