精英家教网 > 初中数学 > 题目详情

在平行四边形ABCD中,点F是BC的中点,AF与BD交于点E,则△ABE与四边形EFCD的面积之比


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:由四边形ABCD是平行四边形,易证得△ADE∽△FBE,又由点F是BC的中点,根据相似三角形的对应边成比例,可得=2,然后设S△BEF=a,根据等高三角形的面积比等于对应底的比,即可求得△ABE的面积,根据相似三角形的面积比等于相似比的平方,即可求得△AED的面积,继而求得四边形EFCD的面积,则可求得答案.
解答:设S△BEF=a,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△ADE∽△FBE,
∵点F是BC的中点,
∴BF=BC=AD,
=2,
∴S△ABE=2a,
=4,
∴S△ADE=4a,
∴S△BCD=S△ABD=2a+4a=6a,
∴S四边形CDEF=S△BCD-S△BEF=6a-a=5a,
∴△ABE与四边形EFCD的面积之比为:2a:5a=2:5.
故选C.
点评:此题考查了平行四边形的性质,相似三角形的判定与性质以及三角形面积问题.此题难度适中,解题的关键是注意数形结合思想的应用,注意三角形面积的求解方法:等高三角形的面积比等于对应底的比与相似三角形的面积比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知如图,在平行四边形ABCD中,BN=DM,BE=DF.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)在平行四边形ABCD中,∠DAB=60°,点E是AD的中点,点O是AB边上一点,且AO=AE,过点E作直线HF交DC于点H,交BA的延长线于F,以OE所在直线为对称轴,△FEO经轴对称变换后得到△F′EO,直线EF′交直线DC于点M.
(1)求证:AD∥OF′;
(2)若M点在点H右侧,OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE⊥AD交BD于点E,CF⊥BC交BD于点F.求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠B的平分线交AD于E,AE=10,ED=4,那么平行四边形ABCD的周长是
48
48

查看答案和解析>>

同步练习册答案