精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形的边,点从点出发,沿射线移动,以为直径作圆,点为圆与射线的公共点,连接,过点与圆相交于点 连接

1)试说明四边形是矩形;

2)当圆与射线相切时,点停止移动,在点移动的过程中:

①矩形的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;

②求点移动路线的长.

【答案】1)证明详见解析;(2最小值为;最大值为2cm

【解析】

试题(1)只要证得三个内角等于90°即可;

2应用三角函数可得,所以,然后只需求出CF的范围就可以求出的范围;

根据圆周角定理和矩形的性质可证得∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点和终点,求出该线段的长度即可.

试题解析:(1∵CE⊙O的直径,点FG⊙O上,∴∠EFC=∠EGC=90°

∵EG⊥EF∴∠FEG=90°四边形EFCG是矩形;

2①∵四边形EFCG是矩形,∴∠BCD=90°

∵∠CEF=∠BDC=,即

当点F与点B重合时,CF=BC=4

⊙O与射线BD相切时,点F与点D重合,

此时CF=CD=3

CF⊥BD时,

CF=cm时,取得最小值为

CF=4cm时,取得最大值为2

如答图4,连接DG,并延长DGBC得延长线与点G’

∵∠BDG=∠FEG=90°,又∵∠DCG’=90°G得移动路线为线段DG’,

∵CD=3cm∴CG’=∴DG’=cm).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)

1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 轴于点 ,点是直线 上的动点.直线 于点 ,过点 作直线 垂直于 ,垂足为 ,过点 的直线 于点 E,当直线 能围成三角形时,设该三角形面积为 ,当直线 能围成三角形时,设该三角形面积为

1)若点 在线段 上,且 ,则 点坐标为_________

2)若点 在直线上,且,则的度数为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,,点EF分别是BCAD的中点.

1)求证:

2)当时,求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCADE均为等腰直角三角形,连接BE,点F、G分别为AD、AC的中点,连接FG.在ADEA旋转的过程中,当B、D、E三点共线时,AB=,AD=1,则线段FG的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.

(1)求证:∠ACD=∠B;

(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;

①求tan∠CFE的值;

②若AC=3,BC=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线为抛物线bc为常数,梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形”.

已知抛物线与其梦想直线交于AB两点A在点B的左侧,与x轴负半轴交于点C

填空:该抛物线的梦想直线的解析式为______,点A的坐标为______,点B的坐标为______;

如图,点M为线段CB上一动点,将AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的梦想三角形,求点N的坐标;

当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案