精英家教网 > 初中数学 > 题目详情

【题目】如图所示,∠ABD∠BDC的平分线相交于点E,BE交CD于点F, ∠1+∠2=90°.

(1)AB与CD平行吗?试说明理由.

(2)试探究∠2∠3的数量关系.

【答案】(1)详见解析(2)∠2+∠3=90°

【解析】分析:(1)根据角平分线的定义可得:ABD=21,BDC=22,根据∠1+2=90°,

可得:ABD+BDC=180°,根据同旁内角互补两直线平行即可证明平行,

(2) 根据角平分线的定义可得:1=ABF.根据两直线平行,内错角相等可得∠3=ABF,根据等量代换可得∠3 =1,因为∠1+2=90°,根据等量代换可得∠2+3=90°.

详解:(1)ABCD,理由如下:

因为BE,DE分别平分∠ABD,BDC,

所以∠ABD=21,BDC=22.

又因为∠1+2=90°,

所以∠ABD+BDC=180°.

所以ABCD (同旁内角互补,两直线平行).

(2).因为BF平分∠ABD,所以∠1=ABF.

又因为ABCD,

所以∠3=ABF(两直线平行,内错角相等).

所以∠3 =1(等量代换).

因为∠1+2=90°(已知).

所以∠2+3=90°(等量代换).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:

(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校对九(1)班学生进行百米测验已知女生达标成绩为18下面两图分别是甲、乙两小组各5名女生的成绩统计图请你根据下面统计图回答问题

(1)甲、乙两组的达标率分别是多少?

(2)根据图中信息你认为哪个组的成绩相对稳定?

(3)如果老师表扬甲组的成绩好于乙组那么老师是从各组的平均数、中位数、达标率、方差中的哪个数来说明的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABCA,B,C的对边分别是a,b,c,三边分别为下列长度判断该三角形是不是直角三角形并指出哪一个角是直角

(1)a=,b=2,c=

(2)a=5,b=7,c=9;

(3)a=2,b=,c=

(4)a=5,b=2,c=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直角三角形AOC的直角顶点O为原点,以OCOA所在直线为x轴和y轴建立平面直角坐标系,点满足

C点的坐标为______;A点的坐标为______.

已知坐标轴上有两动点PQ同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束的中点D的坐标是,设运动时间为问:是否存在这样的t,使?若存在,请求出t的值;若不存在,请说明理由.

F是线段AC上一点,满足,点G是第二象限中一点,连OG,使得E是线段OA上一动点,连CEOF于点H,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若把不等式组的解集在数轴上表示出来,则其对应的图形为

A. 长方形 B. 线段 C. 射线 D. 直线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线ACBD相交于点O,分别延长OAOC到点EF,使AE=CF,依次连接BFDE各点.

1)求证:BAE≌△BCF

2)若∠ABC=40°,则当∠EBA=  时,四边形BFDE是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点EAD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BEM点处,延长BCEF交于点N.有下列四个结论:①DF=CF②BF⊥EN③△BEN是等边三角形;④SBEF=3SDEF.其中,将正确结论的序号全部选对的是( )

A. ①②③

B. ①②④

C. ②③④

D. ①②③④

查看答案和解析>>

同步练习册答案