精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD的对角线ACBD相交于点O,分别延长OAOC到点EF,使AE=CF,依次连接BFDE各点.

1)求证:BAE≌△BCF

2)若∠ABC=40°,则当∠EBA=  时,四边形BFDE是正方形.

【答案】(1)证明见解析;(2)25.

【解析】分析:(1)由菱形的性质得出AB=CB,由等腰三角形的性质得出BAC=BCA,证出BAE=BCF,由SAS证明BAE≌△BCF即可;(2)由菱形的性质得出ACBD,OA=OC,OB=OD,ABO=ABC=20°,证出OE=OF,得出四边形BFDE是菱形,证明OBE是等腰直角三角形,得出OB=OE,BD=EF,证出四边形BFDE是矩形,即可得出结论.

本题解析:

(1)证明:四边形ABCD是菱形,

∴AB=CB,

∴∠BAC=∠BCA,

∴180°﹣∠BAC=180°﹣∠BCA,

∠BAE=∠BCF,

BAE和BCF中,

∴△BAE≌△BCF(SAS);

(2)解:若ABC=40°,则当EBA=25°时,四边形BFDE是正方形.理由如下:

四边形ABCD是菱形,

ACBD,OA=OC,OB=OD,ABO=ABC=20°

∵AE=CF,

∴OE=OF,

四边形BFDE是平行四边形,

∵AC⊥BD,∴四边形BFDE是菱形,

∵∠EBA=25°,

∴∠OBE=25°+20°=45°,

∴△OBE是等腰直角三角形,

∴OB=OE,

∴BD=EF,

四边形BFDE是矩形,

四边形BFDE是正方形;

故答案为:25.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为(  )

A.60海里
B.45海里
C.20 海里
D.30 海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两同学同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠ABD∠BDC的平分线相交于点E,BE交CD于点F, ∠1+∠2=90°.

(1)AB与CD平行吗?试说明理由.

(2)试探究∠2∠3的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

(1)求证:四边形AEBD是矩形;

(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)如图,四边形ABCDAB∥CDAB≠CDBD=AC

1)求证:AD=BC

2)若EFGH分别是ABCDACBD的中点,求证:线段EF与线段GH互相垂直平分。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长均为1个单位的正方形网格图中,建立了平面直角坐标系xOy,按要求解答下列问题:

(1)写出△ABC三个顶点的坐标;

(2)画出△ABC向右平移6个单位后得到的图形△A1B1C1

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.

(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?

(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.

查看答案和解析>>

同步练习册答案