15£®Í¼1ÖУ¬¶þ´Îº¯Êýy=-ax2-4ax-$\frac{3}{4}$µÄͼÏóc½»xÖáÓÚA£¬BÁ½µã£¨AÔÚBµÄ×ó²à£©£¬¹ýAµãµÄÖ±Ïß$y=kx+3k£¨k£¼-\frac{1}{4}£©$½»cÓÚÁíÒ»µãC£¨x1£¬y1£©£¬½»yÖáÓÚM£®
£¨1£©ÇóµãAµÄ×ø±ê£¬²¢Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¹ýµãB×÷BD¡ÍAC½»ACÓÚD£¬ÈôM£¨0£¬-3$\sqrt{3}$£©ÇÒQµãÊÇÖ±ÏßACÉϵÄÒ»¸ö¶¯µã£®Çó³öµ±¡÷DBQÓë¡÷AOMÏàËÆÊ±µãQµÄ×ø±ê£»
£¨3£©ÉèP£¨-1£¬2£©£¬Í¼2ÖÐÁ¬CP½»¶þ´Îº¯ÊýµÄͼÏóÓÚÁíÒ»µãE£¨x2£¬y2£©£¬Á¬AE½»yÖáÓÚN£®OM•ONÊÇ·ñÊÇÒ»¸ö¶¨Öµ£¿Èç¹ûÊǶ¨Öµ£¬Çó³ö¸ÃÖµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÖ±Ïßy=kx+3kÇó³öµãA×ø±ê£¬´úÈëÅ×ÎïÏß½âÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©·ÖËÄÖÖÇéÐÎÌÖÂÛ¢ÙÈçͼ1ÖУ¬µ±QÔÚDAµÄÑÓ³¤ÏßÉÏʱ£¬¡ÏBQD=30¡ã£¬¡÷BQD¡«¡÷AOM£¬¢Úµ±QÓëµãAÖØºÏʱ£¬¡ÏBQD=60¡ã¡÷DQB¡«¡÷OAM£¬¢ÛÈçͼ2ÖУ¬µ±QÔÚÏß¶ÎDCÉÏʱ£¬¡ÏBQD=60¡ã£¬¡÷DQB¡«¡÷OAM£¬¢ÜÈçͼ3ÖУ¬µ±¡ÏBQD=30¡ãʱ£¬¡÷DQB¡«¡÷OMA·Ö±ð½âÖ±½ÇÈý½ÇÐμ´¿É£®
£¨3£©Çó³öÖ±ÏßPCµÄ½âÎöʽ£¬ÓëÅ×ÎïÏß×é³É·½³Ì×éÇó³öµãE×ø±ê£¬ÔÙÇó³öÖ±ÏßAEºóÇó³öµãN×ø±ê£¬ÓÃk±íʾOM¡¢ON¼´¿É½â¾öÎÊÌ⣮

½â´ð £¨1£©½â£ºy=0£¬kx+3k=0½âÖ®µÃx=-3£¬ËùÒÔA£¨-3£¬0£©£¬
ÒòΪA£¨-3£¬0£©ÔÚy=-ax2-4ax-$\frac{3}{4}$£¬ËùÒÔ0=-9a+12a-$\frac{3}{4}$£¬
½âÖ®¿ÉµÃa=$\frac{1}{4}$£¬
ËùÒԸöþ´Îº¯ÊýµÄ±í´ïʽy=-$\frac{1}{4}$x2-x-$\frac{3}{4}$£¬
£¨2£©ÔÚRt¡÷AOMÖУ¬OA=3£¬OM=3$\sqrt{3}$tan¡ÏOAM=$\frac{OM}{AO}$=$\sqrt{3}$£¬ËùÒÔ¡ÏOAM=60¡ã£¬
¢ÙÈçͼ1ÖУ¬µ±QÔÚDAµÄÑÓ³¤ÏßÉÏʱ£¬¡ÏBQD=30¡ã£¬¡÷BQD¡×¡÷AOM£¬
ÔÚRt¡÷ABDÖУ¬BD=BA¡Ásin60¡ã=$\sqrt{3}$£¬
ÔÚRt¡÷BQDÖУ¬BD=OQ¡Ásin30¡ã=$\sqrt{3}$£¬½âµÃBQ=2$\sqrt{3}$£¬
¹ýQ×÷ÔÚQQ¡ä¡ÍxÖá´¹×ãΪQ¡ä£¬
¡ß¡ÏBAD=60¡ã=¡ÏBQA+¡ÏQBA£¬¡ÏBQD=30¡ã£¬
¡à¡ÏQBQ¡ä=30¡ã£¬
ÔÚRT¡÷BQQ¡äÖУ¬¡ß¡ÏQBQ¡ä=30¡ã£¬BQ=2$\sqrt{3}$£¬
QQ¡ä=$\sqrt{3}$£¬BQ¡ä=3£¬
ËùÒÔQ£¨-4£¬$\sqrt{3}$£©£®
¢Úµ±QÓëµãAÖØºÏʱ£¬¡ÏBQD=60¡ã¡÷DQB¡×¡÷OAM£¬´ËµãQ£¨-3£¬0£©£®
¢ÛÈçͼ2ÖУ¬µ±QÔÚÏß¶ÎDCÉÏʱ£¬¡ÏBQD=60¡ã£¬¡÷DQB¡×¡÷OAM£¬
ÔÚ¡÷AQBÖУ¬¡ÏBAQ=¡ÏAQB=60¡ã£¬
µÃBQ=AB=2£¬
ËùÒÔQ£¨-2£¬-$\sqrt{3}$£©£®
¢ÜÈçͼ3ÖУ¬µ±¡ÏBQD=30¡ãʱ£¬¡÷DQB¡×¡÷OMA£¬´ËʱBQ¡ÎOM
ÉèQ£¨-1£¬y£©ÔÚÖ±Ïßy=-$\sqrt{3}$x-3$\sqrt{3}$-ÉÏ£¬½âµÃy=-2$\sqrt{3}$£¬
´Ó¶øQ£¨-1£¬-2$\sqrt{3}$£©£®
×ÛÉÏËùÊö£¬Q£¨-4£¬$\sqrt{3}$£©»òQ£¨-3£¬0£©»òQ£¨-2£¬-$\sqrt{3}$£©»òQ£¨-1£¬-2$\sqrt{3}$£©£®
£¨3£©Èçͼ4ÖУ¬Ö±Ïßy=kx+3kÓë¶þ´Îº¯Êýy=-$\frac{1}{4}$x2-x-$\frac{3}{4}$ͼÏóµÄ½»µãÊÇA£¬CÁ½µã£¬
ËùÒÔ$\left\{\begin{array}{l}y=-\frac{1}{4}{x^2}-x-\frac{3}{4}\\ y=kx+3k\end{array}$£¬ÕûÀí¿ÉµÃ$\frac{1}{4}{x}^{2}$+£¨k+1£©x+£¨$\frac{3}{4}$+3k£©=0£¬
ÓÖÒòΪA£¨-3£¬0£©£¬C£¨x1£¬y1£©£¬
ËùÒÔx1=-4k-1£¬y1=-4k2+2k£¬
¹ýµãP£¨-1£¬2£©ÓëµãCµÄÖ±ÏߣºY=$\frac{-4{k}^{2}+2k-2}{-4k}$x+$\frac{-4{k}^{2}+2k-2}{-4k}$+2£¬
Ö±ÏßPCÓëÅ×ÎïÏߵĽ»µã£¬$\left\{\begin{array}{l}{y=-\frac{1}{4}{x}^{2}-x-\frac{3}{4}}\\{y=\frac{-4{k}^{2}+2k-2}{-4k}x+\frac{-4{k}^{2}+2k-2}{-4k}+2}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½£º
$\frac{1}{4}\\;{x}^{2}$x2+£¨1+$\frac{-4{k}^{2}+2k-2}{-4k}$£©x+$\frac{-4{k}^{2}+2k-2}{-4k}-\frac{5}{4}$=0£¬
¡àx2+x1=x2+£¨-4k-1£©=-$\frac{1+\frac{-4{k}^{2}+2k-2}{-4k}}{\frac{1}{4}}$£¬
¡àx2=-1-$\frac{2}{k}$£¬y2=$\frac{1}{k}-\frac{1}{{k}^{2}}$£¬
¡àÖ±ÏßAEΪy=$\frac{1}{2k}$x+$\frac{3}{2k}$£¬
¡àOM=-3k£¬ON=-$\frac{3}{2k}$£¬
¡àOM•ON=£¨-3k£©£¨-$\frac{3}{2k}$£©=$\frac{9}{2}$£®
¡àOM•ONÊǶ¨Öµ£¬Õâ¸ö¶¨ÖµÊÇ$\frac{9}{2}$£®




µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓйØÖªÊ¶¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ö±½ÇÈý½ÇÐÎ30¶È½ÇµÄÐÔÖʵÈ֪ʶ£¬Ñ§»á´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£¬Ñ§»áÓòÎÊý±íʾֱÏß½âÎöʽ¡¢µãµÄ×ø±ê£¬ÕÆÎÕ·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½â·½³Ì
£¨1£©$\left\{\begin{array}{l}x=6y-7\\ x-y=13\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}2x+3y=0\\ 3x-y=11\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬¡ÏB=¡Ï1£¬ÄÇô¸ù¾ÝÁ½Ö±Ï߯½ÐУ¬Í¬Î»½ÇÏàµÈ£¬¿ÉµÃAD¡ÎBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÁâÐÎABCDµÄÁ½Ìõ¶Ô½ÇÏßAC£¬BD³¤·Ö±ðΪ6cm¡¢8cm£¬ÇÒAE¡ÍBC£¬Õâ¸öÁâÐεÄÃæ»ýS=24cm2£¬AE=$\frac{24}{5}$cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¡ÑOµÄ°ë¾¶Îª$\sqrt{6}$£¬OC´¹Ö±ÓÚÏÒAB£¬´¹×ãΪC£¬AB=2$\sqrt{2}$£¬µãDÔÚ¡ÑOÉÏ£®
£¨1£©Èçͼ1£¬ÈôµãDÔÚAOµÄÑÓ³¤ÏßÉÏ£¬Á¬½áCD½»°ë¾¶OBÓÚµãE£¬Á¬½áBD£¬ÇóBD£¬EDµÄ³¤£»
£¨2£©ÈôÉäÏßODÓëABµÄÑÓ³¤ÏßÏཻÓÚµãF£¬ÇÒ¡÷OCDÊǵÈÑüÈý½ÇÐΣ¬ÇëÔÚͼ2»­Ê¾Òâͼ²¢Çó³öAFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¼ÆË㣺$-{£¨{-1}£©^{2016}}-{£¨{\frac{1}{2}}£©^{-3}}+{£¨{cos{{86}¡ã}+\frac{5}{¦Ð}}£©^0}+|{3\sqrt{3}-8sin{{60}¡ã}}|$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬Ð¡Ã÷ÔÚAʱ²âµÃijÊ÷µÄÓ°³¤Îª1m£¬BʱÓÖ²âµÃ¸ÃÊ÷µÄÓ°³¤Îª4Ã×£¬ÈôÁ½´ÎÈÕÕյĹâÏß»¥Ïà´¹Ö±£¬Ê÷µÄ¸ß¶ÈΪ£¨¡¡¡¡£©
A£®2mB£®$\sqrt{3}$mC£®$\sqrt{2}$mD£®$\sqrt{5}$m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬¡ÏABC=70¡ã£¬Ôò¡ÏDµÄ¶ÈÊýΪ20¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³²ÍÌüΪÁËÎüÒý¹Ë¿Í£¬¾ÙÐгÔÌײÍÓŻݻ£¬ÌײÍÿÌ×20Ôª£¬Ã¿Ïû·ÑÒ»Ì×¼´¿ÉÖ±½Ó»ñµÃ10Ôª²Í„»£¬»òÕß²ÎÓëÓÎÏ·Ó®µÃ²Í„»£®ÓÎÏ·¹æÔòÈçÏ£ºÉèÁ¢ÁËÒ»¸ö¿ÉÒÔ×ÔÓÉת¶¯µÄתÅÌ£¨Èçͼ£¬×ªÅ̱»Æ½¾ù·Ö³É12·Ý£©£¬¹Ë¿ÍÿÏû·ÑÒ»Ì×Ìײͣ¬¾Í¿ÉÒÔ»ñµÃÒ»´Îת¶¯×ªÅ̵Ļú»á£¬Èç¹ûתÅÌÍ£Ö¹ºó£¬Ö¸ÕëÕýºÃ¶Ô×¼ºìÉ«¡¢»ÆÉ«¡¢ÂÌÉ«¡¢¿Õ°×ÇøÓò£¬ÄÇô¹Ë¿Í¾Í¿ÉÒÔ·Ö±ð»ñµÃ20Ôª¡¢15Ôª¡¢10Ôª¡¢5Ôª²Í„»£¬Ï´ξͲÍʱ¿ÉÒÔ´úÌæÏÖ½ðÏû·Ñ£®
£¨1£©Çó¹Ë¿ÍÈÎÒâת¶¯Ò»´ÎתÅÌµÄÆ½¾ùÊÕÒæÊǶàÉÙ£»
£¨2£©Èç¹ûÄãÊDzÍÌü¾­Àí£¬ÄãÏ£Íû¹Ë¿Í²ÎÓëÓÎÏ·»¹ÊÇÖ±½Ó»ñµÃ10Ôª²Í„»£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸