精英家教网 > 初中数学 > 题目详情
16.如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)补全△A′B′C′;
(2)画出AB边上的中线CD;
(3)△A′B′C′的面积为8.

分析 (1)根据图形平移的性质画出△A′B′C′即可;
(2)找出AB的中点D,连接CD即可;
(3)根据三角形的面积公式即可得出结论.

解答 解:(1)如图所示;

(2)如图CD即为所求;

(3)S△A′B′C′=$\frac{1}{2}$×4×4=8.
故答案为:8.

点评 本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,在Rt△ABC中,∠B=90°,tanA=$\frac{3}{4}$,点D在边AB上,AD=4,以BD为直径的⊙O与边AC切于点E.
(1)求0B的长;
(2)过点D作DF∥AC交⊙O于点F,连结BF,求△DFB的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:$\sqrt{27}+$($\frac{1}{2}$)-2-|-$\sqrt{3}$|+(2016)0-4sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm,点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同速度运动,点N到达点C时停止运动,设运动时间为t(s).
(1)当t为保值时,点G刚好落在线段AD上?
(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.
(3)设正方形MNGH的边NG能在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.将202 000用科学记数法表示为2.02×105

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知4x2-mx+25是完全平方式,则常数m的值为20或-20.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.用换元法解方程:$\frac{{x}^{2}-2}{x}$+$\frac{2x}{{x}^{2}-2}$=3时,若设$\frac{{x}^{2}-2}{x}=y$,并将原方程化为关于y的整式方程,那么这个整式方程是(  )
A.y2-3y+2=0B.y2-3y-2=0C.y2+3y+2=0D.y2+3y-2=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O.与AC相切于点E,连结DE并延长与BC的延长线交于点F.
(1)求证:EF2=BD•CF;
(2)若CF=1,BD=5.求sinA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,AB=6,将以AB为直径的半圆再绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为$\frac{9}{2}$π.

查看答案和解析>>

同步练习册答案