精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.

(1)求一次函数与反比例函数的解析式;
(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;
(3)求△ABC的面积.

【答案】
(1)

解:∵反比例函数经过点D(﹣2,﹣1),

∴把点D代入y= (m≠0),

∴﹣1=

∴m=2,

∴反比例函数的解析式为:y=

∵点A(1,a)在反比例函数上,

∴把A代入y= ,得到a= =2,

∴A(1,2),

∵一次函数经过A(1,2)、D(﹣2,﹣1),

∴把A、D代入y=kx+b (k≠0),得到:

解得:

∴一次函数的解析式为:y=x+1;


(2)

解:据图可知:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值;


(3)

解:过点A作AE⊥x轴交x轴于点E,

∵直线l⊥x轴,N(3,0),

∴设B(3,p),C(3,q),

∵点B在一次函数上,

∴p=3+1=4,

∵点C在反比例函数上,

∴q=

∴SABC= BCEN= ×(4﹣ )×(3﹣1)=


【解析】(1)由反比例函数经过点D(﹣2,﹣1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;(2)结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;(3)首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=8,A=60°,ADC=150°,四边形ABCD的周长为32.

(1)求∠BDC的度数;

(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现将一张矩形ABCD的纸片一角折叠,若能使点D落在AB边上F处,折痕为CE,恰好∠AEF=60°,延长EF交CB的延长线于点G.

(1)求证:△CEG是等边三角形;
(2)若矩形的一边AD=3,求另一边AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC的平分线BF与△ABC的外角平分线CF相交于点F,过FDF∥BC,交ABD,交ACE

1)写出图中所有的等腰三角形,并选择其中一个说明理由。

2)直接写出BDCEDE之间的数量关系。

3)若DE=5cmCE=8cmBF=24cm,求△BDF的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.

(1)如图1,当EF与AB相交时,若EAB=60°,求证:EG=AG+BG;

(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);

(3)如图3,当EF与CD相交时,且EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,的平分线与的平分线相交于点.

⑴.若,求度数;

⑵.由第⑴小题的计算,发现有什么关系?它们是不是一定有这种关系?请作出说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若四边形ABCD、四边形GFED都是正方形,AD=4, ,当正方形GFED绕D旋转到如图的位置,点F在边AD上,延长CE交AG于H,交AD于M.则CM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:

时间分组(小时)

频数(人数)

频率

0≤t0.5

10

0.2

0.5≤t1


0.4

1≤t1.5

10

0.2

1.5≤t2


0.1

2≤t2.5

5


合计


1

请你将频数分布表和频数分布直方图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB边的垂直平分线BCDAC边的垂直平分线BCE 相交于点OADE的周长为6cm

1)求BC的长;

2)分别连结OAOBOC,若△OBC的周长为16cm,求OA的长;

查看答案和解析>>

同步练习册答案