【题目】如图,四边形中,,,,,则四边形的面积为( )
A.10B.8C.12D.20
【答案】A
【解析】
作AE⊥AC,DE⊥AE,两线交于E点,再作DF⊥AC于F点,先证明△ABC与△ADE全等,然后将原四边形面积转化为梯形的面积进一步求解即可.
如图所示,作AE⊥AC,DE⊥AE,两线交于E点,再作DF⊥AC于F点,
则四边形AFDE为矩形,
∴AE=DF,AF=DE,
∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAC=∠DAE,
在△ABC与△ADE中,
∵∠ACB=∠E,∠BAC=∠DAE,AB=AD,
∴△ABC≌△ADE,
∴BC=DE,AC=AE,且△ABC的面积=△ADE的面积,
设BC=,则DE=,
∵AC=4BC,
∴DF=AE=AC=,
∴CF=ACAF= ACDE=,
在Rt△DFC中,,
∴,
∴或(舍去),
∴四边形ABCD的面积=△ABC的面积+△ACD的面积=梯形ACDE的面积=,
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以 1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t秒.
(1)当 t 为何值时,△PBQ的面积等于 35cm2?
(2)当 t 为何值时,PQ的长度等8cm?
(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点 B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为 BC上的点,F为 CD边上的点,且AE=AF,AB=4,设EC=x,△AEF 的面积为y,则y与x之间的函数关系式是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能满足△ADC与△ACB相似的条件是( )
A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13 个结,然后以3个结间距、4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是( )
A.直角三角形两个锐角互补
B.三角形内角和等于180°
C.三角形两条短边的平方和等于长边的平方
D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,点E、F分别在AB、AD上,∠EFB=2∠AFE=2∠BCE,CD=9,CE=20,则线段AF的长为( ).
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com