精英家教网 > 初中数学 > 题目详情

【题目】如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.

(1)求C点坐标及直线BC的解析式;

(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;

(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离点P.

【答案】(1)过C点向x轴作垂线,垂足为D,

由位似图形性质可知:△ABO∽△ACD, ∴

由已知可知:

.∴C点坐标为

直线BC的解析为: y=kx+4,将(5,9)代入得

5k+4=9,解得k=1.

所以y=x+4.

(2)因为抛物线顶点在x轴正半轴,所以设顶点坐标为(h,0),则设抛物线解析式为

y=a(x-h)2.

将(0,4),(5,9)代入函数解析式得.解得或者.

∴解得抛物线解析式为

又∵的顶点在x轴负半轴上,不合题意,故舍去.

∴满足条件的抛物线解析式为

(准确画出函数图象)

(3) 将直线BC绕B点旋转与抛物线相交与另一点P,设P到 直线AB的距离为h,

故P点应在与直线AB平行,且相距的上下两条平行直线上.

由平行线的性质可得:两条平行直线与y轴的交点到直线BC的距离也为

如图,设与y轴交于E点,过E作EF⊥BC于F点,

在Rt△BEF中

.∴可以求得直线与y轴交点坐标为同理可求得直线与y轴交点坐标为

∴两直线解析式

根据题意列出方程组: ⑴;⑵

∴解得:

∴满足条件的点P有四个,它们分别是

【解析】(1)利用位似图形的性质及相似比,可得OD,OC的长度,进而得到C的坐标.利用待定系数法求出直线BC的函数解析式.

(2)顶点落在x轴正半轴上,所以抛物线设出顶点式,然后把B,C两点代入求得二次函数解析式,最后将不符合条件的舍去

(3)到直线AB的距离直线有两条.根据直线AB的解析式可求得其与y轴的夹角为45°,从而得到RtEPB为等腰直角三角形,得到斜边BE=6.从而得到直线的解析式.两直线的解析式分别于二次函数解析式组成方程组,就可以求得点P坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线ACBD相交于点O,∠CAB=∠ACB,过点BBEABAC于点E

(1)求证:ACBD

(2)若AB=14,cos∠CAB=,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形OABC是矩形,四边形ADEF是正方形,点ADx轴的正半轴上,点Cy轴的正半轴上,点FAB上,点BE在反比例函数y(x0)的图象上,正方形ADEF的面积为9,且BFAF,则k值为(  )

A. 15 B. C. D. 17

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列结论:足球距离地面的最大高度为足球飞行路线的对称轴是直线足球被踢出时落地;足球被踢出时,距离地面的高度是.

其中正确结论的个数是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角ACB中,∠ACB=90°O是斜边AB的中点,点DE分别在直角边ACBC上,且∠DOE=90°DEOC于点P,则下列结论

(1) AOD≌△COE(2) OE=OD(3) EOP∽△CDP.

其中正确的结论是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个钢筋三角架三边长分别为20cm50cm60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).

A. 一种 B. 两种 C. 三种 D. 四种

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家海洋局将中国钓鱼岛最高峰命名为高华峰,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732=1.414

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

同步练习册答案